论文标题

关于通过归一化体积的奇异点的界限

On the boundedness of singularities via normalized volume

论文作者

Liu, Yuchen, Moraga, Joaquín, Süß, Hendrik

论文摘要

在本文中,我们研究了有关奇点的归一化体积和界限的猜想。我们专注于具有复杂性1,三重奇异性和超表面奇异性的奇异性。考虑到实际值v> 0,我们证明了具有归一化体积至少V的k相吻合的三重奇异性的类别。在N维复杂度-1和n维超表面奇异性的情况下,类似的陈述被证明是arbitary n的。在KLT奇异性的一般情况下,即没有关于K-符号性的假设,我们表明,为了特殊的退化,归一化体积的界限与复杂性-1圆环作用的奇异性界限。我们展示了一个三维示例,该示例表明最后一个语句是最佳的。

In this article we study conjectures regarding normalized volume and boundedness of singularities. We focus on singularities with a torus action of complexity 1, threefold singularities, and hypersurface singularities. Given a real value v>0, we prove that the class of K-semistable threefold singularities with normalized volume at least v forms a bounded family. Analogous statements are proved in the case of n-dimensional complexity-1 and n-dimensional hypersurface singularities for arbitary n. In the general case of klt singularities, i.e. without the assumption on K-semistability, we show that, up to special degenerations, the normalized volume bounds singularities with a complexity-1 torus action. We exhibit a 3-dimensional example which shows that this last statement is optimal.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源