论文标题

比较宇宙射线流体动力学的能量和熵配方

Comparing energy and entropy formulations for cosmic ray hydrodynamics

论文作者

Weber, Matthias, Thomas, Timon, Pfrommer, Christoph

论文摘要

宇宙射线(CRS)在许多天体物理系统中起着重要作用。 CRS在对银河系环境的血浆尺度上作用,通常将CR能量密度作为不断发展的数量建模为流体。该方法存在一个缺陷,即相应的Cr进化方程不为保守形式,因为它包含绝热源项,该术语将CR与热气体融为一体。在没有非绝热变化的情况下,不断发展Cr熵密度是一种物理上等效的选择,可以避免这种潜在的数值不一致。在这项工作中,我们研究了使用巨大平行的移动网格代码AREPO的磁性融合动力(MHD)模拟的两种方法。我们在一系列具有各种分辨率和冲击马赫数的冲击管测试中研究了这两种方法的性能。我们发现,熵方案对纯绝热CR的理想化案例在冲击过程中的表现最佳,而两种方法在较低的分辨率下产生了相似的结果。在此设置中,这两个方案运行良好,几乎独立于冲击马赫数。在减震器上考虑了主动的CR加速度,基于能量的方法在数值上被证明要稳定得多,并且在确定冲击速度时,尤其是在低分辨率下,这对于天体物理大规模模拟更为典型。对于更现实的应用,我们模拟了不同光晕质量的几个孤立星系的形成,发现这两种数值方法几乎产生几乎相同的结果,其差异远低于常见的天体物理不确定性。

Cosmic rays (CRs) play an important role in many astrophysical systems. Acting on plasma scales to galactic environments, CRs are usually modeled as a fluid, using the CR energy density as the evolving quantity. This method comes with the flaw that the corresponding CR evolution equation is not in conservative form as it contains an adiabatic source term that couples CRs to the thermal gas. In the absence of non-adiabatic changes, instead evolving the CR entropy density is a physically equivalent option that avoids this potential numerical inconsistency. In this work, we study both approaches for evolving CRs in the context of magneto-hydrodynamic (MHD) simulations using the massively parallel moving-mesh code AREPO. We investigate the performance of both methods in a sequence of shock-tube tests with various resolutions and shock Mach numbers. We find that the entropy-conserving scheme performs best for the idealized case of purely adiabatic CRs across the shock while both approaches yield similar results at lower resolution. In this setup, both schemes operate well and almost independently of the shock Mach number. Taking active CR acceleration at the shock into account, the energy-based method proves to be numerically much more stable and significantly more accurate in determining the shock velocity, in particular at low resolution, which is more typical for astrophysical large-scale simulations. For a more realistic application, we simulate the formation of several isolated galaxies at different halo masses and find that both numerical methods yield almost identical results with differences far below common astrophysical uncertainties.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源