论文标题
有效地探索超出标准模型的多维参数空间
Efficiently Exploring Multi-Dimensional Parameter Spaces Beyond the Standard Model
论文作者
论文摘要
我们提出了一种方法,以减轻探索超级模型理论中多维参数空间的挑战。我们通过智能地对理论参数进行采样并构建内核密度估计器来评估任何选择参数的可能性。通过减少昂贵的蒙特卡洛模拟数量,该方法提供了一种更有效的测试复杂理论的方法。我们说明了我们的技术,以对短寿命的重中微子$ n $设定新的限制,这是对中微子实验中异常的解释。使用在检测器附近的T2K中查找Lepton对的搜索,我们在广大参数空间区域中发现了模型参数的排除限制,从而充分利用了我们新方法的优势。通过单个蒙特卡洛模拟,我们获得了模型参数任意选择的差分事件速率,从而使我们能够在模型参数空间的任何切片上施放限制。我们得出的结论是,寿命大于$cτ^0 \ gtrsim 3〜 $ cm的$ n $颗粒被T2K数据排除在外。我们还根据总率,寿命和$ n $质量来得出独立于模型的约束,并提供了近似的分析公式。该方法可以应用于物理的其他分支,以有效地探索理论参数的景观。
We propose a method to ease the challenges of exploring multi-dimensional parameter spaces in beyond-the-Standard Model theories. We evaluate the model likelihood for any choice of parameters by sampling the theory parameters intelligently and building a Kernel Density Estimator. By reducing the number of expensive Monte-Carlo simulations, this method provides a more efficient way to test complex theories. We illustrate our technique to set new limits on a short-lived heavy neutrino $N$, proposed as an explanation of anomalies in neutrino experiments. Using a search for lepton pairs in the T2K near detector, we find exclusion limits on the model parameters in a vast region of parameter space, fully exploiting the advantages of our new method. With a single Monte Carlo simulation, we obtain the differential event rate for arbitrary choices of model parameters, allowing us to cast limits on any slice of the model parameter space. We conclude that $N$ particles with lifetimes greater than $c τ^0 \gtrsim 3~$cm are excluded by T2K data. We also derive model-independent constraints in terms of the total rate, lifetime, and $N$ mass and provide an approximated analytical formula. This method can be applied in other branches of physics to explore the landscape of theory parameters efficiently.