论文标题
远程状态估计中基于DRL的资源分配
DRL-based Resource Allocation in Remote State Estimation
论文作者
论文摘要
远程状态估计,传感器将分布式动态工厂的测量结果与共享无线资源相比,将分布式动态工厂的测量值发送到远程估计器,这对于行业关键的任务应用4.0至关重要。对于远程估计系统的动态无线电资源分配算法,假设无线通信模型过于简单,并且只能适用于小型设置。在这项工作中,我们考虑了与正交多访问和非正交多访问方案的实用无线模型的远程估计系统。我们得出了可以稳定远程估计系统的必要条件。根据传输功率预算,渠道统计和植物的参数描述条件。对于每个多个访问方案,我们制定了一个新型的动态资源分配问题,作为实现最小总体长期平均估计均值误差的决策问题。估计质量和渠道质量状态都考虑到决策。我们系统地研究了不同离散,混合离散和连续作用空间的不同多访问方案下的问题。我们提出了新型的动作空间压缩方法,并开发了先进的深度强化学习算法来解决问题。数值结果表明,我们的算法有效地解决了资源分配问题,并提供了比文献更好的可扩展性。
Remote state estimation, where sensors send their measurements of distributed dynamic plants to a remote estimator over shared wireless resources, is essential for mission-critical applications of Industry 4.0. Existing algorithms on dynamic radio resource allocation for remote estimation systems assumed oversimplified wireless communications models and can only work for small-scale settings. In this work, we consider remote estimation systems with practical wireless models over the orthogonal multiple-access and non-orthogonal multiple-access schemes. We derive necessary and sufficient conditions under which remote estimation systems can be stabilized. The conditions are described in terms of the transmission power budget, channel statistics, and plants' parameters. For each multiple-access scheme, we formulate a novel dynamic resource allocation problem as a decision-making problem for achieving the minimum overall long-term average estimation mean-square error. Both the estimation quality and the channel quality states are taken into account for decision making. We systematically investigated the problems under different multiple-access schemes with large discrete, hybrid discrete-and-continuous, and continuous action spaces, respectively. We propose novel action-space compression methods and develop advanced deep reinforcement learning algorithms to solve the problems. Numerical results show that our algorithms solve the resource allocation problems effectively and provide much better scalability than the literature.