论文标题

非最少耦合引力涡流:关键耦合$ξ_c$ in Ads $ _3 $中的相变

The non-minimally coupled gravitating vortex: phase transition at critical coupling $ξ_c$ in AdS$_3$

论文作者

Edery, Ariel

论文摘要

我们认为Nielsen-Oersen Vortex与宇宙常数$λ$无限制地耦合到爱因斯坦重力。非最小耦合项$ξ\,r \,| ϕ |^2 $是自然添加到涡流的情况下,因为它可以保留量规不变性(以下$ r $是RICCI标量和$ξ$ a a n dimensionals notemension boupling常数)。该术语起着双重作用:它有助于标量场的潜力和爱因斯坦 - 希尔伯特(Einstein-Hilbert)的重力。结果,标量场的真空期望值(VEV)和ADS $ _3 $背景中的宇宙常数取决于$ξ$。这导致了一个新颖的功能:有一个关键的耦合$ξ_c$,其中VEV对于$ξ\geξ_C$为零,但是当$ξ$交叉以下$ξ_c$,并且仪表对称性自发损坏时,则变为零。此外,我们表明,关键耦合附近的VEV具有与$ |ξ-ξ_C|^{1/2} $成比例的功率定律行为。因此,$ξ_c$可以看作是金兹堡 - 兰道(GL)均值均值$ t_c $的类似物,其中二阶相变低于$ t_c $,订单参数具有相似的功率法行为$ | t-t_c | t-cc |^{1/2} $接近$ t_c $。关键耦合仅存在于ADS $ _3 $背景中;它不存在于渐近平坦的时空(拓扑上是一个锥体)中,其中VEV保持在固定的非零值与$ξ$无关。但是,渐近锥形时空的赤字角度取决于$ξ$,并且不再仅由质量决定。值得注意的是,较高的质量不一定会产生更高的赤字角度。运动方程与存在的非最小耦合项更为复杂。但是,通过方便的替代可以减少方程数并以数值求解以获取精确的涡旋解决方案。

We consider the Nielsen-Olesen vortex non-minimally coupled to Einstein gravity with cosmological constant $Λ$. A non-minimal coupling term $ξ\,R\,|ϕ|^2$ is natural to add to the vortex as it preserves gauge-invariance (here $R$ is the Ricci scalar and $ξ$ a dimensionless coupling constant). This term plays a dual role: it contributes to the potential of the scalar field and to the Einstein-Hilbert term for gravity. As a consequence, the vacuum expectation value (VEV) of the scalar field and the cosmological constant in the AdS$_3$ background depend on $ξ$. This leads to a novel feature: there is a critical coupling $ξ_c$ where the VEV is zero for $ξ\ge ξ_c$ but becomes non-zero when $ξ$ crosses below $ξ_c$ and the gauge symmetry is spontaneously broken. Moreover, we show that the VEV near the critical coupling has a power law behaviour proportional to $|ξ-ξ_c|^{1/2}$. Therefore $ξ_c$ can be viewed as the analog of the critical temperature $T_c$ in Ginzburg-Landau (GL) mean-field theory where a second-order phase transition occurs below $T_c$ and the order parameter has a similar power law behaviour $|T-T_c|^{1/2}$ near $T_c$. The critical coupling exists only in an AdS$_3$ background; it does not exist in asymptotically flat spacetime (topologically a cone) where the VEV remains at a fixed non-zero value independent of $ξ$. However, the deficit angle of the asymptotic conical spacetime depends on $ξ$ and is no longer determined solely by the mass; remarkably, a higher mass does not necessarily yield a higher deficit angle. The equations of motion are more complicated with the non-minimal coupling term present. However, via a convenient substitution one can reduce the number of equations and solve them numerically to obtain exact vortex solutions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源