论文标题
基于内存的神经网络,用于端到端自动驾驶
Memory based neural networks for end-to-end autonomous driving
论文作者
论文摘要
自主驾驶的端到端控制方面的最新工作已经调查了基于视觉的外部感知感的使用。受这些结果的启发,我们提出了一种新的基于端到端内存的神经体系结构,用于机器人转向和油门控制。我们根据基于模拟测试电路的性能来描述和将这种体系结构与以前的方法和以前的方法进行比较。提出的工作证明了使用内部内存以更好地概括模型的功能,并允许其驱动更多的电路/情况。我们在各种环境中分析了算法,并得出结论,所提出的管道对变化的相机配置具有鲁棒性。当前的所有工作,包括数据集,网络模型体系结构,权重,模拟器和比较软件,都是开源的,易于复制和扩展。
Recent works in end-to-end control for autonomous driving have investigated the use of vision-based exteroceptive perception. Inspired by such results, we propose a new end-to-end memory-based neural architecture for robot steering and throttle control. We describe and compare this architecture with previous approaches using fundamental error metrics (MAE, MSE) and several external metrics based on their performance on simulated test circuits. The presented work demonstrates the advantages of using internal memory for better generalization capabilities of the model and allowing it to drive in a broader amount of circuits/situations. We analyze the algorithm in a wide range of environments and conclude that the proposed pipeline is robust to varying camera configurations. All the present work, including datasets, network models architectures, weights, simulator, and comparison software, is open source and easy to replicate and extend.