论文标题
实践中的机器学习事件检测工作流程:2019年Durrës余震序列的案例研究
Machine learning event detection workflows in practice: A case study from the 2019 Durrës aftershock sequence
论文作者
论文摘要
机器学习(ML)方法在近年来应用于地震事件检测任务时表现出了出色的性能。借助现已用于检测地震性的许多ML技术,实践中应用这些方法可以进一步强调它们在更传统的方法上的优势。构建此类工作流程还可以对实用数据的最新算法进行基准测试比较。我们将最新的方法结合在地震事件检测中,以分析$ M_ {W} $ 6.4 2019杜勒斯在阿尔巴尼亚的售后震动地震活动的18天期间。我们测试了两种基于相关的事件检测方法,即端到端的地震检测工作流程(EQT; Mousavi等,2020),以及与双曲事件提取器(Woollam等,2020年)的Phasenet(Zhu&Beroza,2019年)的Phasenet(Zhu&Beroza,2019年)。两位独立运行的地震专家汇编的数据集对两种ML方法进行了基准测试,他们处理了这一18天期间的一部分事件。 Phasenet&Hex总共确定了3,551个事件,EQT检测1,110个事件,较大的目录(Phasenet&Hex)达到了〜1的完整性。通过以相同的最小1D速度模型重新定位派生的目录,我们计算出所得下中心位置和相位选择的统计数据。我们发现,ML方法产生的结果与手动采摘器一致,其偏差不比不同的采摘器之间的偏差大。搬迁后所达到的合适性与手动选件的合适性相当,但是ML挑选器(尤其是Phasenet)每次事件的选次数量增加会产生较小的下中心误差。每小时相关事件的数量增加了一天中的地震安静时期,并且在这些时期内检测到最小的事件,我们认为这表明了真实的事件关联。
Machine Learning (ML) methods have demonstrated exceptional performance in recent years when applied to the task of seismic event detection. With numerous ML techniques now available for detecting seismicity, applying these methods in practice can help further highlight their advantages over more traditional approaches. Constructing such workflows also enables benchmarking comparisons of the latest algorithms on practical data. We combine the latest methods in seismic event detection to analyse an 18-day period of aftershock seismicity for the $M_{w}$ 6.4 2019 Durrës earthquake in Albania. We test two phase association-based event detection methods, the EarthQuake Transformer (EQT; Mousavi et al., 2020) end-to-end seismic detection workflow, and the PhaseNet (Zhu & Beroza, 2019) picker with the Hyperbolic Event eXtractor (Woollam et al., 2020) associator. Both ML approaches are benchmarked against a data set compiled by two independently operating seismic experts who processed a subset of events of this 18-day period. In total, PhaseNet & HEX identifies 3,551 events, and EQT detects 1,110 events with the larger catalog (PhaseNet & HEX) achieving a magnitude of completeness of ~1. By relocating the derived catalogs with the same minimum 1D velocity model, we calculate statistics on the resulting hypocentral locations and phase picks. We find that the ML-methods yield results consistent with manual pickers, with bias that is no larger than that between different pickers. The achieved fit after relocation is comparable to that of the manual picks but the increased number of picks per event for the ML pickers, especially PhaseNet, yields smaller hypocentral errors. The number of associated events per hour increases for seismically quiet times of the day, and the smallest magnitude events are detected throughout these periods, which we interpret to be indicative of true event associations.