论文标题

为极端多标签文本分类利用动态和细粒语义范围

Exploiting Dynamic and Fine-grained Semantic Scope for Extreme Multi-label Text Classification

论文作者

Wang, Yuan, Song, Huiling, Huo, Peng, Xu, Tao, Yang, Jucheng, Chen, Yarui, Zhao, Tingting

论文摘要

极端的多标签文本分类(XMTC)是指标记给定文本的问题,该文本具有来自大标签集的最相关标签子集。由于XMTC中的标签尺寸较大,大多数标签仅具有少数培训实例。为了解决此数据稀疏问题,大多数现有的XMTC方法利用早期获得的固定标签簇来平衡尾标和头标签上的性能。但是,这样的标签簇为每个文本提供了静态和粗粒的语义范围,该簇忽略了不同文本的不同特征,并且难以建模具有尾标文本的精确语义范围。在本文中,我们为XMTC提出了一个新颖的框架treaderxml,该框架采用动态和细粒度的语义范围,从各个文本的教师知识从各个文本的教师知识中进行优化,以优化有条件的先验类别语义范围。 TreaderXML通过训练集中的类似文本和层次标签信息动态地获取每个文本的教师知识,以释放明显的细粒标记语义范围的能力。然后,TreaderXML受益于一个新颖的双重合作网络,该网络首先通过平行编码模块和阅读模块来了解文本的特征及其相应的面向标签的语义范围,其次,通过交互模块嵌入了两个部分,以通过模块将文本的代表正规化,并通过动态和优质标签标签的名义范围的semantic semantic Spope secpibles和prectiction targients通过prectiction cope sections condiction targess和“ prectional”构模。三个XMTC基准数据集的实验结果表明,我们的方法可实现新的最新结果,尤其是对严重失衡和稀疏数据集的表现良好。

Extreme multi-label text classification (XMTC) refers to the problem of tagging a given text with the most relevant subset of labels from a large label set. A majority of labels only have a few training instances due to large label dimensionality in XMTC. To solve this data sparsity issue, most existing XMTC methods take advantage of fixed label clusters obtained in early stage to balance performance on tail labels and head labels. However, such label clusters provide static and coarse-grained semantic scope for every text, which ignores distinct characteristics of different texts and has difficulties modelling accurate semantics scope for texts with tail labels. In this paper, we propose a novel framework TReaderXML for XMTC, which adopts dynamic and fine-grained semantic scope from teacher knowledge for individual text to optimize text conditional prior category semantic ranges. TReaderXML dynamically obtains teacher knowledge for each text by similar texts and hierarchical label information in training sets to release the ability of distinctly fine-grained label-oriented semantic scope. Then, TReaderXML benefits from a novel dual cooperative network that firstly learns features of a text and its corresponding label-oriented semantic scope by parallel Encoding Module and Reading Module, secondly embeds two parts by Interaction Module to regularize the text's representation by dynamic and fine-grained label-oriented semantic scope, and finally find target labels by Prediction Module. Experimental results on three XMTC benchmark datasets show that our method achieves new state-of-the-art results and especially performs well for severely imbalanced and sparse datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源