论文标题

使用时间多重的归化光学参数振荡器可扩展的半古典实现

Scalable semi-classical implementation of Shor factoring using time-multiplexed degenerate optical parametric oscillators

论文作者

Li, Minghui, Wang, Wei, Tang, Zikang, Ian, Hou

论文摘要

提出了一种在退化的光学参数振荡上多样地编码任意长整数对的方案。极化方向和振荡脉冲的相位的经典纠缠(视为两个计算寄存器)提供了每对内部的整数相关性。我们显示了Shor的量子保理算法的主要算法步骤,模块化指数和离散的傅立叶变换,可以在寄存器中作为脉冲干扰在外部逻辑的帮助下作为脉冲干扰执行。因此,保理算法的渲染等效于可扩展且无腐蚀性的半古典光学路径实现。从从路径末端测得的四孔干扰产生的二维边缘图像从二维边缘图像中鉴定出了从中推导出质量因子的繁多乘法顺序。

A scheme to encode arbitrarily long integer pairs on degenerate optical parametric oscillations multiplexed in time is proposed. The classical entanglement between the polarization directions and the phases of the oscillating pulses, regarded as two computational registers, furnishes the integer correlations within each pair. We show the major algorithmic steps, modular exponentiation and discrete Fourier transform, of Shor's quantum factoring algorithm can be executed in the registers as pulse interferences under the assistance of external logics. The factoring algorithm is thus rendered equivalent to a semi-classical optical-path implementation that is scalable and decoherence-free. The sought-after multiplicative order, from which the prime factors are deduced, is identified from a two-dimensional fringe image generated by four-hole interference measured at the end of the path.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源