论文标题
通过DNN解耦进行多代理协作推断:中间功能压缩和边缘学习
Multi-Agent Collaborative Inference via DNN Decoupling: Intermediate Feature Compression and Edge Learning
论文作者
论文摘要
最近,通过协作推断部署深神经网络(DNN)模型,该推断将预训练的模型分为两个部分,并分别在用户设备(UE)和Edge Server上执行它们,从而变得有吸引力。但是,DNN的大型中间特征会阻碍灵活的去耦,现有方法要么集中在单个UE方案上,要么只是在考虑所需的CPU周期的情况下定义任务,但忽略了单个DNN层的不可分割性。在本文中,我们研究了多代理协作推理方案,其中单个边缘服务器协调了多个UES的推理。我们的目标是对所有UES进行快速和节能的推断。为了实现这一目标,我们首先设计了一种基于自动编码器的轻型方法,以压缩大型中间功能。然后,我们根据DNN的推论开销来定义任务,并将问题作为马尔可夫决策过程(MDP)提出。最后,我们提出了一种多代理混合近端策略优化(MAHPPO)算法,以通过混合动作空间解决优化问题。我们对不同类型的网络进行了广泛的实验,结果表明,我们的方法可以减少56%的推理潜伏期,并节省多达72 \%的能源消耗。
Recently, deploying deep neural network (DNN) models via collaborative inference, which splits a pre-trained model into two parts and executes them on user equipment (UE) and edge server respectively, becomes attractive. However, the large intermediate feature of DNN impedes flexible decoupling, and existing approaches either focus on the single UE scenario or simply define tasks considering the required CPU cycles, but ignore the indivisibility of a single DNN layer. In this paper, we study the multi-agent collaborative inference scenario, where a single edge server coordinates the inference of multiple UEs. Our goal is to achieve fast and energy-efficient inference for all UEs. To achieve this goal, we first design a lightweight autoencoder-based method to compress the large intermediate feature. Then we define tasks according to the inference overhead of DNNs and formulate the problem as a Markov decision process (MDP). Finally, we propose a multi-agent hybrid proximal policy optimization (MAHPPO) algorithm to solve the optimization problem with a hybrid action space. We conduct extensive experiments with different types of networks, and the results show that our method can reduce up to 56\% of inference latency and save up to 72\% of energy consumption.