论文标题

单个验证模型的各种彩票促进了合奏

Diverse Lottery Tickets Boost Ensemble from a Single Pretrained Model

论文作者

Kobayashi, Sosuke, Kiyono, Shun, Suzuki, Jun, Inui, Kentaro

论文摘要

结合是一种流行的方法,用于提高绩效作为最后的度假胜地。但是,从单个预验证的模型中进行的多个模型并不是很有效。这可能是由于合奏成员之间缺乏多样性所致。本文提出了多机票集合,该集合会对单个预审计模型的不同子网进行填充,并将其合并。我们从经验上证明,赢得门票子网比密集网络产生的预测更多样化,它们的合奏在某些任务上的表现优于标准合奏。

Ensembling is a popular method used to improve performance as a last resort. However, ensembling multiple models finetuned from a single pretrained model has been not very effective; this could be due to the lack of diversity among ensemble members. This paper proposes Multi-Ticket Ensemble, which finetunes different subnetworks of a single pretrained model and ensembles them. We empirically demonstrated that winning-ticket subnetworks produced more diverse predictions than dense networks, and their ensemble outperformed the standard ensemble on some tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源