论文标题
基于神经背景匪徒的动态传感器选择,用于低功耗身体区域网络
Neural Contextual Bandits Based Dynamic Sensor Selection for Low-Power Body-Area Networks
论文作者
论文摘要
用机器智能提供健康监测设备对于启用自动移动医疗保健应用非常重要。但是,由于这些设备的资源稀缺,这带来了其他挑战。这项工作介绍了基于神经背景的动态传感器选择方法,用于高性能和资源有效的身体面积网络,以实现下一代移动健康监测设备。该方法利用上下文匪徒在运行时选择最有用的传感器组合,并忽略冗余数据以降低身体区域网络中的传输和计算功率(BAN)。提出的方法已使用最常见的健康监测应用程序之一验证:心脏活动监测。在考虑通信能量消耗的同时,将我们提出的方法中的解决方案与相关工作的解决方案进行了比较。我们的最终解决方案可以在PTB-XL ECG数据集中达到$ 78.8 \%$ au-prc,以用于心脏异常检测,同时分别将总体能耗和计算能量降低了$ 3.7 \ times $和$ 4.3 \ times $。
Providing health monitoring devices with machine intelligence is important for enabling automatic mobile healthcare applications. However, this brings additional challenges due to the resource scarcity of these devices. This work introduces a neural contextual bandits based dynamic sensor selection methodology for high-performance and resource-efficient body-area networks to realize next generation mobile health monitoring devices. The methodology utilizes contextual bandits to select the most informative sensor combinations during runtime and ignore redundant data for decreasing transmission and computing power in a body area network (BAN). The proposed method has been validated using one of the most common health monitoring applications: cardiac activity monitoring. Solutions from our proposed method are compared against those from related works in terms of classification performance and energy while considering the communication energy consumption. Our final solutions could reach $78.8\%$ AU-PRC on the PTB-XL ECG dataset for cardiac abnormality detection while decreasing the overall energy consumption and computational energy by $3.7 \times$ and $4.3 \times$, respectively.