论文标题

MOSPAT:基于汽车的模型选择和时间序列异常检测的参数调整

MOSPAT: AutoML based Model Selection and Parameter Tuning for Time Series Anomaly Detection

论文作者

Chatterjee, Sourav, Bopardikar, Rohan, Guerard, Marius, Thakore, Uttam, Jiang, Xiaodong

论文摘要

组织利用异常和更改点检测算法来检测用户行为或服务可用性和性能的变化。许多现成的检测算法虽然有效,但不能轻易地用于大型组织中,其中成千上万的用户监视了数百万使用时间序列特征和异常模式的用例和指标。对于每种用例,算法和参数的选择都需要精确:手动调整不会扩展,并且自动调整需要地面真相,这很少可用。 在本文中,我们探索Mospat是一种基于端到端的自动化机器学习方法,用于模型和参数选择,并与生成模型相结合以生成标记的数据。我们可扩展的端到端系统使大型组织中的个别用户可以根据其特定的用例和数据特征来量身定制时间序列监视,而无需专业了解异常检测算法或费力的手动标签。我们对真实和合成数据的广泛实验表明,该方法使用任何单个算法都始终优于表现。

Organizations leverage anomaly and changepoint detection algorithms to detect changes in user behavior or service availability and performance. Many off-the-shelf detection algorithms, though effective, cannot readily be used in large organizations where thousands of users monitor millions of use cases and metrics with varied time series characteristics and anomaly patterns. The selection of algorithm and parameters needs to be precise for each use case: manual tuning does not scale, and automated tuning requires ground truth, which is rarely available. In this paper, we explore MOSPAT, an end-to-end automated machine learning based approach for model and parameter selection, combined with a generative model to produce labeled data. Our scalable end-to-end system allows individual users in large organizations to tailor time-series monitoring to their specific use case and data characteristics, without expert knowledge of anomaly detection algorithms or laborious manual labeling. Our extensive experiments on real and synthetic data demonstrate that this method consistently outperforms using any single algorithm.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源