论文标题

关于神经开放信息提取的调查:当前状态和未来方向

A Survey on Neural Open Information Extraction: Current Status and Future Directions

论文作者

Zhou, Shaowen, Yu, Bowen, Sun, Aixin, Long, Cheng, Li, Jingyang, Yu, Haiyang, Sun, Jian, Li, Yongbin

论文摘要

开放信息提取(OpenIE)促进了独立于域的大型语料库的关系事实的发现。该技术很好地适合许多开放世界的自然语言理解场景,例如自动知识基础构建,开放域问答和明确的推理。由于深度学习技术的快速发展,已经提出了许多神经开放式体系结构并取得了可观的性能。在这项调查中,我们提供了有关状态神经开放模型的广泛概述,其关键设计决策,优势和劣势。然后,我们讨论当前解决方案的局限性以及Openie问题本身的开放问题。最后,我们列出了最近的趋势,这些趋势可以帮助扩大其范围和适用性,从而为未来的Openie建立了有希望的方向。据我们所知,本文是有关此特定主题的第一篇评论。

Open Information Extraction (OpenIE) facilitates domain-independent discovery of relational facts from large corpora. The technique well suits many open-world natural language understanding scenarios, such as automatic knowledge base construction, open-domain question answering, and explicit reasoning. Thanks to the rapid development in deep learning technologies, numerous neural OpenIE architectures have been proposed and achieve considerable performance improvement. In this survey, we provide an extensive overview of the-state-of-the-art neural OpenIE models, their key design decisions, strengths and weakness. Then, we discuss limitations of current solutions and the open issues in OpenIE problem itself. Finally we list recent trends that could help expand its scope and applicability, setting up promising directions for future research in OpenIE. To our best knowledge, this paper is the first review on this specific topic.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源