论文标题

锂阳极钝化膜中的电腐蚀和电场:对自我释放的影响

Galvanic Corrosion and Electric Field in Lithium Anode Passivation Films: Effects on Self-Discharge

论文作者

Leung, Kevin, Merrill, Laura C., Harrison, Katharine L.

论文摘要

电池界面有助于控制速率能力,安全/稳定性,循环寿命和自我释放,但是在我们的理解中,在原子长度尺度上,我们的理解仍然存在,可以利用可以利用以改善界面性质。特别是,Li部分镀在铜电流收集器上,该收集器与无氧化锂金属电池有关,该金属细胞是高密度能量电池研究的圣杯,最近据报道会经历电动腐蚀并表现出短暂的架子寿命。我们采用大规模密度功能理论(DFT)计算和X射线光电子光谱,以检查电解质和Li | Cu连接在两个施加的伏特上涂有薄的,均匀的电解质相(SEI)钝化膜的反应。这些新型的DFT电腐蚀模拟表明,电解质降解优先发生在Liplated区域上,并应导致更厚的SEI膜。我们的模拟揭示了传统金属局部蚀和LI-腐蚀机制之间的基本差异。此外,使用最近提出的高反应性氢化锂(LIH)成分SEI作为例如,我们区分了部分负责自我释放的电化学和化学降解途径,而化学途径则发现具有慢速动力学的化学途径。我们还预测,在Lih等天然SEI组件中,通常都应该存在电场,以及在Lii和Lialo(2)等人工SEI薄膜中经常用于改善电池循环。基础和统一这些预测是DFT电压/过电势定义的框架,我们从结构金属腐蚀研究等电化学学科中得出。我们的分析只能使用正确的电子电压定义进行。

Battery interfaces help govern rate capability, safety/stability, cycle life, and self-discharge, but significant gaps remain in our understanding at atomic length scales that can be exploited to improve interfacial properties. In particular, Li partially plated on copper current collectors, relevant to the anodeless, lithium metal cell which is a holy grail of high density energy battery research, has recently been reported to undergo galvanic corrosion and exhibit short shelf lives. We apply large scale Density Functional Theory (DFT) calculations and X-ray photoelectron spectroscopy to examine the reaction between the electrolyte and Li|Cu junctions coated with thin, uniform electrolyte interphase (SEI) passivating films at two applied voltages. These novel DFT galvanic corrosion simulations show that electrolyte degradation preferentially occurs on Li-plated regions and should lead to thicker SEI films. Our simulations reveal similarities but also fundamental differences between traditional metal localized pitting and Li-corrosion mechanisms. Furthermore, using the recently proposed, highly reactive lithium hydride (LiH) component SEI as example, we distinguish between electrochemical and chemical degradation pathways which are partially responsible for self-discharge, with the chemical pathway found to exhibit slow kinetics. We also predict that electric fields should in general exist across natural SEI components like LiH, and across artificial SEI films like LiI and LiAlO(2) often applied to improve battery cycling. Underlying and unifying these predictions is a framework of DFT voltage/overpotential definitions which we have derived from electrochemistry disciplines like structural metal corrosion studies; our analysis can only be made using the correct electronic voltage definitions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源