论文标题

UGLAD:通过优化深度展开的网络来稀疏图恢复

uGLAD: Sparse graph recovery by optimizing deep unrolled networks

论文作者

Shrivastava, Harsh, Chajewska, Urszula, Abraham, Robin, Chen, Xinshi

论文摘要

概率图形模型(PGM)是复杂系统的生成模型。他们依靠变量之间的条件独立性假设来学习稀疏表示,这些表示可以以图形的形式可视化。此类模型用于域中探索和结构发现的域中发现不足的领域。这项工作引入了一种新型技术,可以通过优化深度展开的网络来执行稀疏图恢复。假设输入数据$ x \ in \ mathbb {r}^{m \ times d} $来自基础多元高斯分布,我们对$ x $上的深层模型应用了一个输出Precision Matrix $ \hatθ$的深层模型,这也可以解释为相邻矩阵。我们的模型UGLAD建立在基础上,并将最先进的模型扩展到无监督的环境中。我们模型的关键好处是(1)UGLAD自动优化了与稀疏相关的正则参数,从而比现有算法更好地具有性能。 (2)我们介绍了基于多任务学习的“共识”策略,以在无监督的设置中强大地处理丢失的数据。我们评估模型结果,这些结果是由基因调节网络产生的合成高斯数据,非高斯数据,并在厌氧消化中提出了一个案例研究。

Probabilistic Graphical Models (PGMs) are generative models of complex systems. They rely on conditional independence assumptions between variables to learn sparse representations which can be visualized in a form of a graph. Such models are used for domain exploration and structure discovery in poorly understood domains. This work introduces a novel technique to perform sparse graph recovery by optimizing deep unrolled networks. Assuming that the input data $X\in\mathbb{R}^{M\times D}$ comes from an underlying multivariate Gaussian distribution, we apply a deep model on $X$ that outputs the precision matrix $\hatΘ$, which can also be interpreted as the adjacency matrix. Our model, uGLAD, builds upon and extends the state-of-the-art model GLAD to the unsupervised setting. The key benefits of our model are (1) uGLAD automatically optimizes sparsity-related regularization parameters leading to better performance than existing algorithms. (2) We introduce multi-task learning based `consensus' strategy for robust handling of missing data in an unsupervised setting. We evaluate model results on synthetic Gaussian data, non-Gaussian data generated from Gene Regulatory Networks, and present a case study in anaerobic digestion.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源