论文标题

计算基于有效的维度和离散正则化

Counting-Based Effective Dimension and Discrete Regularizations

论文作者

Horváth, Ivan, Markoš, Peter, Mendris, Robert

论文摘要

各种复杂性的分形结构在本质上很常见,基于度量的维度(Minkowski,Hausdorff)提供了其基本的几何表征。但是,在量子的基本动力学级别上,结构不会通过固定集的几何形状进入,而是在相关空间上的概率分布中编码。然后出现了问题,是否存在以这种方式表示的结构的基于分形度量的尺寸的强大概念。从有效的数字理论开始,我们构建了所有基于计数的方案,以选择有效的概率收集对象的有效支持,并将有效计数维度(ECD)与每个方案相关联。然后,我们证明ECD是不依赖于方案的,因此是一个明确定义的基于度量的维度,其含义类似于固定集的Minkowski维度。在物理语言中,ECD表征了通过离散``正则化''在理论或模型中产生的概率描述。例如,我们的分析对量子染色体动力学和安德森模型的有效空间维度的最新结果产生了令人惊讶的结果。我们讨论了如何在实践中评估正规化去除的可靠性,并在3D Anderson批判性的背景下进行此类分析。

Fractal-like structures of varying complexity are common in nature, and measure-based dimensions (Minkowski, Hausdorff) supply their basic geometric characterization. However, at the level of fundamental dynamics, which is quantum, structure does not enter via geometry of fixed sets but is encoded in probability distributions on associated spaces. The question then arises whether a robust notion of fractal measure-based dimension exists for structures represented in this way. Starting from effective number theory, we construct all counting-based schemes to select effective supports on collections of objects with probabilities and associate the effective counting dimension (ECD) with each. We then show that ECD is scheme-independent and, thus, a well-defined measure-based dimension with meaning analogous to the Minkowski dimension of fixed sets. In physics language, ECD characterizes probabilistic descriptions arising in a theory or model via discrete ``regularization''. For example, our analysis makes recent surprising results on effective spatial dimensions in quantum chromodynamics and Anderson models well founded. We discuss how to assess the reliability of regularization removals in practice and perform such analysis in the context of 3d Anderson criticality.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源