论文标题

在椭圆曲线的四分之一模型和理性的Diophantine $ d(q)$五五个五五个五五个五五个模型上,分别是2

Divisibility by 2 on quartic models of elliptic curves and rational Diophantine $D(q)$-quintuples

论文作者

Sadek, Mohammad, Yesin, Tuğba

论文摘要

令$ c $为平滑的属属属曲线,由四分之一多项式方程式在理性字段$ \ mathbb q $上,$ p \ in c(\ mathbb q)$。我们给出了椭圆曲线$(C,P)$的理性点的划分的明确标准。这提供了与WeierStrass方程描述的椭圆曲线上划分的经典标准的类似物。 我们采用此标准来调查将合理$ d(q)$ - 四倍的问题扩展到五重奏的问题。我们提供具体的例子,我们可以给出一个肯定的答案。这些结果之一意味着,尽管有理$ d(16t+9)$ - Quadruple $ \ {t,16t+8,2 25t+14,36t+20 \} $不能扩展到多条件$ d(16t+9)$ -quintuple,使用线性polynomial,在其中无限的$ 9 $ 9 $ 9 $ 9 $ - Quadruple可以扩展到合理的$ d(16t+9)$ Quintuple。此外,这些无限的$ t $值是通过正值莫德尔 - 韦尔等级的一定椭圆曲线上的理性点进行了参数。

Let $C$ be a smooth genus one curve described by a quartic polynomial equation over the rational field $\mathbb Q$ with $P\in C(\mathbb Q)$. We give an explicit criterion for the divisibility-by-$2$ of a rational point on the elliptic curve $(C,P)$. This provides an analogue to the classical criterion of the divisibility-by-$2$ on elliptic curves described by Weierstrass equations. We employ this criterion to investigate the question of extending a rational $D(q)$-quadruple to a quintuple. We give concrete examples to which we can give an affirmative answer. One of these results implies that although the rational $ D(16t+9) $-quadruple $\{t, 16t+8,2 25t+14, 36t+20 \}$ can not be extended to a polynomial $ D(16t+9) $-quintuple using a linear polynomial, there are infinitely many rational values of $t$ for which the aforementioned rational $ D(16t+9) $-quadruple can be extended to a rational $ D(16t+9) $-quintuple. Moreover, these infinitely many values of $t$ are parametrized by the rational points on a certain elliptic curve of positive Mordell-Weil rank.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源