论文标题

评论“量子计量学的热力学原理”

Comment on "Thermodynamic Principle for Quantum Metrology"

论文作者

Dooley, Shane, Kewming, Michael J., Mitchison, Mark T., Goold, John

论文摘要

在物理中。莱特牧师。 128,200501(2022)作者考虑了量子计量学的热力学成本。主要结果之一是$ \ Mathcal {s} \ geq \ log(2)\ | h_λ\ |^{ - 2} f_q [ψ_λ] $,它声称将最佳测量的shannon熵$ \ Mathcal {s} $(即,根据对称的对数衍生)的量子$ f_q $ f _q $ f _q $ fulgarithmic衍生)$ | | | | |但是,我们表明,在作者考虑的设置中,我们有$ \ Mathcal {s} = \ log(2)$和$ \ | | h_λ\ |^{2} = \ max_ {ψ_λ} f_q [ψ_λ] $,以便它们的不等式减少到微不足道的不等式$ \ max_ {ψ_λ} f_q [ψ_λ] 信息。此外,对于纯状态量子计量学,存在最佳测量值(尽管不是基于对称对数导数),$ 0 \ leq \ leq \ Mathcal {s} \ leq \ log(2)$,导致某些状态$ |ψ_λ\ rangle $的不平等。

In Phys. Rev. Lett. 128, 200501 (2022) the authors consider the thermodynamic cost of quantum metrology. One of the main results is $\mathcal{S} \geq \log(2) \| h_λ\|^{-2} F_Q [ψ_λ]$, which purports to relate the Shannon entropy $\mathcal{S}$ of an optimal measurement (i.e., in the basis of the symmetric logarithmic derivative) to the quantum Fisher information $F_Q$ of the pure state $|ψ_λ\rangle$. However, we show that in the setting considered by the authors we have $\mathcal{S} = \log(2)$ and $\| h_λ\|^{2} = \max_{ψ_λ} F_Q[ψ_λ]$, so that their inequality reduces to the trivial inequality $\max_{ψ_λ} F_Q[ψ_λ] \geq F_Q[ψ_λ]$, and does not in fact relate the entropy $\mathcal{S}$ to the quantum Fisher information. Moreover, for pure state quantum metrology, there exist optimal measurements (though not in the basis of the symmetric logarithmic derivative) for which $0 \leq \mathcal{S} \leq \log(2)$, leading to violations of the inequality for some states $|ψ_λ\rangle$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源