论文标题

通过人群监督的细粒度计数

Fine-Grained Counting with Crowd-Sourced Supervision

论文作者

Kay, Justin, Foley, Catherine M., Hart, Tom

论文摘要

人群是动物生态学图像分析的越来越流行的工具。可以利用众包注释的计算机视觉方法可以进一步扩展分析。在这项工作中,我们研究了这样做的潜力,即精细粒度计数的艰巨任务。与标准的人群计数任务相反,细粒度的计数还涉及分类人群中的个体的属性。我们介绍了一个从动物生态学的新数据集,以启用这项研究,其中包含170万个对8个细粒类别的人群注释。它是用于细粒度计数的最大可用数据集,也是首先通过人群注释对任务进行研究的第一个数据集。我们介绍了从收集的注释中生成汇总“地面真相”的方法,以及可以利用汇总信息的计数方法。我们的方法比可比的基线提高了8%的结果,这表明算法使用人群的监督学习细粒度计数的可能性。

Crowd-sourcing is an increasingly popular tool for image analysis in animal ecology. Computer vision methods that can utilize crowd-sourced annotations can help scale up analysis further. In this work we study the potential to do so on the challenging task of fine-grained counting. As opposed to the standard crowd counting task, fine-grained counting also involves classifying attributes of individuals in dense crowds. We introduce a new dataset from animal ecology to enable this study that contains 1.7M crowd-sourced annotations of 8 fine-grained classes. It is the largest available dataset for fine-grained counting and the first to enable the study of the task with crowd-sourced annotations. We introduce methods for generating aggregate "ground truths" from the collected annotations, as well as a counting method that can utilize the aggregate information. Our method improves results by 8% over a comparable baseline, indicating the potential for algorithms to learn fine-grained counting using crowd-sourced supervision.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源