论文标题
湍流的雷利 - 贝纳德对流,带有附着在板上的气泡
Turbulent Rayleigh-Bénard convection with bubbles attached to the plate
论文作者
论文摘要
我们在数值上研究了湍流的雷利 - 贝纳德对流,其气泡附着在热板上,模仿电解,催化或沸腾的核心特征。与液体相比,由于气体的导热率要低得多并改变边界层的结构,因此板上的气泡存在降低了全局传热。数值模拟在Prandtl编号PR = 4.38(Water)和Rayleigh Number $ 10^7 \ le Ra \ le10^8 $中进行3D执行。为简单起见,我们假设气泡是同等大小的,并且已经固定了接触线。我们改变了总气体覆盖面积分数$ 0.18 \ le s_0 \ le 0.62 $,相对气泡高度$ 0.02 \ le H/h/h \ le0.05 $(其中$ h $是Rayleigh-bénard细胞的高度),气泡数量$ 40 \ le n \ le n \ le 144 $和他们的Spatial分布。在所有情况下,都观察到不对称温度曲线,我们根据每个水平截面的热通量保护进行定量解释。我们进一步提出了使用等效的单相设置来模仿附着的气泡的想法。基于此等效性,我们可以计算传热。没有引入任何自由参数,对努塞尔数的预测,上和下部的热边界层厚度和平均中心温度与数值结果很好。最后,我们的预测也适用于较大的PR(例如$ 400 $)的情况,这表明我们的结果也可以应用于用电极表面或催化中的气泡,预测水电解中的传质。
We numerically investigate turbulent Rayleigh-Bénard convection with gas bubbles attached to the hot plate, mimicking a core feature in electrolysis, catalysis, or boiling. The existence of bubbles on the plate reduces the global heat transfer due to the much lower thermal conductivity of gases as compared to liquids and changes the structure of the boundary layers. The numerical simulations are performed in 3D at Prandtl number Pr=4.38 (water) and Rayleigh number $10^7\le Ra \le10^8$. For simplicity, we assume the bubbles to be equally-sized and having pinned contact lines. We vary the total gas-covered area fraction $0.18 \le S_0 \le 0.62$, the relative bubble height $0.02\le h/H \le0.05$ (where $H$ is the height of the Rayleigh-Bénard cell), the bubble number $40 \le n \le 144$, and their spatial distribution. In all cases, asymmetric temperature profiles are observed, which we quantitatively explain based on the heat flux conservation at each horizontal section. We further propose the idea of using an equivalent single-phase setup to mimic the system with attached bubbles. Based on this equivalence, we can calculate the heat transfer. Without introducing any free parameter, the predictions for the Nusselt number, the upper and lower thermal boundary layer thicknesses, and the mean centre temperature well agree with the numerical results. Finally, our predictions also work for the cases with much larger Pr (e.g. $400$), which indicates that our results can also be applied to predict the mass transfer in water electrolysis with bubbles attached to the electrode surface or in catalysis.