论文标题
重新访问异源在图表中的作用:边缘分类的观点
Revisiting the role of heterophily in graph representation learning: An edge classification perspective
论文作者
论文摘要
图表学习旨在将节点内容与图形结构集成以学习节点/图表表示。然而,发现许多现有的图形学习方法在具有高杂质级别的数据上无法很好地工作,从而占不同类标签之间的边缘很大比例。最近解决这个问题的努力集中在改善消息传递机制上。但是,尚不清楚异质性是否确实会损害图神经网络(GNN)的性能。关键是要展现一个节点与其直接邻居之间的关系,例如它们是异性还是同质性?从这个角度来看,在这里我们研究了杂质在图形表示在披露连接节点之间的关系之前/之后的作用。特别是,我们提出了一个端到端框架,该框架都学习边缘的类型(即异性/同质性),并利用边缘类型的信息来提高图形神经网络的表现力。我们以两种不同的方式实施此框架。具体而言,为了避免通过异质边缘传递的消息,我们可以通过删除边缘分类器鉴定的异性边缘来优化图形结构以具有同质性。另外,可以利用有关异性邻居的存在的信息进行特征学习,因此,设计了一种混合消息传递方法来汇总同质性邻居,并根据边缘分类使异性邻居多样化。广泛的实验表明,在整个同质级别的多个数据集上,使用了拟议的框架在多个数据集上提出了GNN的显着性能提高。
Graph representation learning aim at integrating node contents with graph structure to learn nodes/graph representations. Nevertheless, it is found that many existing graph learning methods do not work well on data with high heterophily level that accounts for a large proportion of edges between different class labels. Recent efforts to this problem focus on improving the message passing mechanism. However, it remains unclear whether heterophily truly does harm to the performance of graph neural networks (GNNs). The key is to unfold the relationship between a node and its immediate neighbors, e.g., are they heterophilous or homophilious? From this perspective, here we study the role of heterophily in graph representation learning before/after the relationships between connected nodes are disclosed. In particular, we propose an end-to-end framework that both learns the type of edges (i.e., heterophilous/homophilious) and leverage edge type information to improve the expressiveness of graph neural networks. We implement this framework in two different ways. Specifically, to avoid messages passing through heterophilous edges, we can optimize the graph structure to be homophilious by dropping heterophilous edges identified by an edge classifier. Alternatively, it is possible to exploit the information about the presence of heterophilous neighbors for feature learning, so a hybrid message passing approach is devised to aggregate homophilious neighbors and diversify heterophilous neighbors based on edge classification. Extensive experiments demonstrate the remarkable performance improvement of GNNs with the proposed framework on multiple datasets across the full spectrum of homophily level.