论文标题
Kold:韩国进攻语言数据集
KOLD: Korean Offensive Language Dataset
论文作者
论文摘要
进攻性语言检测的最新指示是层次建模,确定进攻性语言的类型和目标,以及具有进攻性跨度注释和预测的解释性。这些改进集中在英语上,并且由于文化和语言差异而无法很好地转移到其他语言上。在本文中,我们介绍了包含40,429条评论的韩国进攻性语言数据集(KOLD),这些评论在层次上以层次的注释,并带有进攻性语言的类型和目标,并附有相应文本跨度的注释。我们从Naver News和YouTube平台收集评论,并提供文章和视频的标题作为注释过程的上下文信息。我们使用这些注释的评论作为韩国伯特和罗伯塔模型的培训数据,发现它们在进攻性检测,目标分类和目标跨度检测方面有效,同时为目标组分类和进攻跨度检测提供了改进的空间。我们发现,目标组分布与现有英语数据集有很大不同,并观察到提供上下文信息可以改善进攻性检测(+0.3),目标分类(+1.5)和目标组分类(+13.1)中的模型性能。我们公开发布数据集和基线模型。
Recent directions for offensive language detection are hierarchical modeling, identifying the type and the target of offensive language, and interpretability with offensive span annotation and prediction. These improvements are focused on English and do not transfer well to other languages because of cultural and linguistic differences. In this paper, we present the Korean Offensive Language Dataset (KOLD) comprising 40,429 comments, which are annotated hierarchically with the type and the target of offensive language, accompanied by annotations of the corresponding text spans. We collect the comments from NAVER news and YouTube platform and provide the titles of the articles and videos as the context information for the annotation process. We use these annotated comments as training data for Korean BERT and RoBERTa models and find that they are effective at offensiveness detection, target classification, and target span detection while having room for improvement for target group classification and offensive span detection. We discover that the target group distribution differs drastically from the existing English datasets, and observe that providing the context information improves the model performance in offensiveness detection (+0.3), target classification (+1.5), and target group classification (+13.1). We publicly release the dataset and baseline models.