论文标题
量子模型用于时空度量的la gabor
Quantum models a la Gabor for space-time metric
论文作者
论文摘要
作为GABOR信号处理的扩展,实施了协变量Weyl-Heisenberg积分量化,以在八维相空间上转换函数$ \ left(x,k \ right)$中的函数。 $ x = \ left(x^μ\右)$是时空变量,$ k = \ left(k^μ\右)$作为Gabor信号处理的扩展,协证的weyl-heisenberg积分量化已实现,以在八维相位空间$ \ eft fiht(x,k k,k k,k,k k,k k \ hel fimply量)上实现了函数。 $ x = \ left(x^μ\右)$是时空变量,$ k = \ left(k^μ\ right)$是他们的共轭波向量频率变量。该过程首先应用于变量$ \ left(x,k \ right)$,并产生规范共轭的本质上是自动接合操作员。接下来是应用于一般相对论的公制$ g_ {μν}(x)$,并产生正则化的半经典相位空间肖像$ \ check {g} _ {μν}(x)$。后者产生了修改的张量能密度。用均匀加速的参考系统和Schwarzschild指标给出了示例。讨论了有趣的概率方面。
As an extension of Gabor signal processing, the covariant Weyl-Heisenberg integral quantization is implemented to transform functions on the eight-dimensional phase space $\left(x,k\right)$ into Hilbertian operators. The $x=\left(x^μ\right)$'s are space-time variables and the $k=\left(k^μ\right)$'s are As an extension of Gabor signal processing, the covariant Weyl-Heisenberg integral quantization is implemented to transform functions on the eight-dimensional phase space $\left(x,k\right)$ into Hilbertian operators. The $x=\left(x^μ\right)$'s are space-time variables and the $k=\left(k^μ\right)$'s are their conjugate wave vector-frequency variables. The procedure is first applied to the variables $\left(x,k\right)$ and produces canonically conjugate essentially self-adjoint operators. It is next applied to the metric field $g_{μν}(x)$ of general relativity and yields regularised semi-classical phase space portraits $\check{g}_{μν}(x)$. The latter give rise to modified tensor energy density. Examples are given with the uniformly accelerated reference system and the Schwarzschild metric. Interesting probabilistic aspects are discussed.