论文标题

量子模型用于时空度量的la gabor

Quantum models a la Gabor for space-time metric

论文作者

Cohen-Tannoudji, Gilles, Gazeau, Jean-Pierre, Habonimana, Célestin, Shabani, Juma

论文摘要

作为GABOR信号处理的扩展,实施了协变量Weyl-Heisenberg积分量化,以在八维相空间上转换函数$ \ left(x,k \ right)$中的函数。 $ x = \ left(x^μ\右)$是时空变量,$ k = \ left(k^μ\右)$作为Gabor信号处理的扩展,协证的weyl-heisenberg积分量化已实现,以在八维相位空间$ \ eft fiht(x,k k,k k,k,k k,k k \ hel fimply量)上实现了函数。 $ x = \ left(x^μ\右)$是时空变量,$ k = \ left(k^μ\ right)$是他们的共轭波向量频率变量。该过程首先应用于变量$ \ left(x,k \ right)$,并产生规范共轭的本质上是自动接合操作员。接下来是应用于一般相对论的公制$ g_ {μν}(x)$,并产生正则化的半经典相位空间肖像$ \ check {g} _ {μν}(x)$。后者产生了修改的张量能密度。用均匀加速的参考系统和Schwarzschild指标给出了示例。讨论了有趣的概率方面。

As an extension of Gabor signal processing, the covariant Weyl-Heisenberg integral quantization is implemented to transform functions on the eight-dimensional phase space $\left(x,k\right)$ into Hilbertian operators. The $x=\left(x^μ\right)$'s are space-time variables and the $k=\left(k^μ\right)$'s are As an extension of Gabor signal processing, the covariant Weyl-Heisenberg integral quantization is implemented to transform functions on the eight-dimensional phase space $\left(x,k\right)$ into Hilbertian operators. The $x=\left(x^μ\right)$'s are space-time variables and the $k=\left(k^μ\right)$'s are their conjugate wave vector-frequency variables. The procedure is first applied to the variables $\left(x,k\right)$ and produces canonically conjugate essentially self-adjoint operators. It is next applied to the metric field $g_{μν}(x)$ of general relativity and yields regularised semi-classical phase space portraits $\check{g}_{μν}(x)$. The latter give rise to modified tensor energy density. Examples are given with the uniformly accelerated reference system and the Schwarzschild metric. Interesting probabilistic aspects are discussed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源