论文标题

分数量子厅系统中Parton州的真实空间纠缠光谱

Real-space entanglement spectra of parton states in fractional quantum Hall systems

论文作者

Anand, Abhishek, Patil, Rushikesh A., Balram, Ajit C., Sreejith, G. J.

论文摘要

真实空间纠缠光谱(RSES)捕获了分数量子厅(FQH)陈述的拓扑顺序的特征。在这项工作中,我们使用Monte Carlo方法,RSE和使用Parton理论构建的非亚伯FQH状态的边缘激发进行数值计算。由于它们的植物产品确定的结构,可以对Parton状态的RSE进行有效的数值计算,从而使我们能够计算高达80个颗粒的系统中的光谱。具体来说,我们计算parton的RSES $ ϕ_2^2 $,$ ϕ_2^3 $和$ ϕ_3^2 $,其中$ ϕ_n $是$ n $填充的Landau级别的波函数,处于基础状态以及在散装Quasihole状态下。然后,我们明确证明了Parton状态的RSE的一对一对应关系,其边缘电流满足Kac-Moody代数的表示。我们还表明,对于这些parton状态的最低兰道级投影版本,该光谱与从边缘当前代数获得的光谱匹配。我们还执行了与Parton状态的边缘激发相对应的重叠矩阵的光谱计算,在不同的Parton Landau水平上的粒子数量有限。在这些匹配中计数RSE中存在的各个分支,提供了有关如何形成不同分支的见解。

Real-space entanglement spectra (RSES) capture characteristic features of the topological order encoded in the fractional quantum Hall (FQH) states. In this work, we numerically compute, using Monte Carlo methods, the RSES and the counting of edge excitations of non-Abelian FQH states constructed using the parton theory. Efficient numerical computation of RSES of parton states is possible, thanks to their product-of-Slater-determinant structure, allowing us to compute the spectra in systems of up to 80 particles. Specifically, we compute the RSES of the parton states $ϕ_2^2$, $ϕ_2^3$, and $ϕ_3^2$, where $ϕ_n$ is the wave function of $n$ filled Landau levels, in the ground state as well as in the presence of bulk quasihole states. We then explicitly demonstrate a one-to-one correspondence of RSES of the parton states with representations of the Kac-Moody algebras satisfied by their edge currents. We also show that for the lowest Landau level projected version of these parton states, the spectra match with that obtained from the edge current algebra. We also perform a computation of spectra of the overlap matrices corresponding to the edge excitations of the parton states with a constrained number of particles in the different parton Landau levels. Counting in these matches the individual branches present in RSES, providing insight about how different branches are formed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源