论文标题

推荐系统中的公平性:研究格局和未来方向

Fairness in Recommender Systems: Research Landscape and Future Directions

论文作者

Deldjoo, Yashar, Jannach, Dietmar, Bellogin, Alejandro, Difonzo, Alessandro, Zanzonelli, Dario

论文摘要

推荐系统可以强烈影响我们在网上看到的信息,例如在社交媒体上,从而影响我们的信念,决策和行动。同时,这些系统可以为不同的利益相关者创造巨大的业务价值。鉴于这种基于AI的系统对个人,组织和社会的潜在影响不断增长,近年来,公平性问题引起了人们的关注。但是,关于推荐系统公平性的研究仍然是一个发展中的领域。在这项调查中,我们首先回顾了最近该地区提出的基本概念和公平概念。之后,通过对160多个学术出版物的回顾,我们概述了该领域的研究当前如何在一般研究方法,公平度量和算法方法方面进行运作。总体而言,我们对最近作品的分析指出了某些研究差距。特别是,我们发现在计算机科学的许多研究工作中,非常抽象的问题操作是普遍的,并且基本规范性主张的问题以及在给定应用程序背景下代表公平建议的问题通常不会深入讨论。这些观察结果要求进行更多的跨学科研究,以更全面和有影响力的方式解决建议。

Recommender systems can strongly influence which information we see online, e.g., on social media, and thus impact our beliefs, decisions, and actions. At the same time, these systems can create substantial business value for different stakeholders. Given the growing potential impact of such AI-based systems on individuals, organizations, and society, questions of fairness have gained increased attention in recent years. However, research on fairness in recommender systems is still a developing area. In this survey, we first review the fundamental concepts and notions of fairness that were put forward in the area in the recent past. Afterward, through a review of more than 160 scholarly publications, we present an overview of how research in this field is currently operationalized, e.g., in terms of general research methodology, fairness measures, and algorithmic approaches. Overall, our analysis of recent works points to certain research gaps. In particular, we find that in many research works in computer science, very abstract problem operationalizations are prevalent and questions of the underlying normative claims and what represents a fair recommendation in the context of a given application are often not discussed in depth. These observations call for more interdisciplinary research to address fairness in recommendation in a more comprehensive and impactful manner.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源