论文标题
具有偏好问题的K-Server
The k-Server with Preferences Problem
论文作者
论文摘要
$ k $ - 服务器问题涵盖了许多资源分配方案,数十年来已经进行了多种变体。我们提出了一个模型,通过请求的首选项来概括$ k $ - 服务器问题,其中服务器不完全相同,并且请求可以表达哪些特定服务器应为其服务。在我们的模型中,请求可以由任何服务器(常规请求)或特定的请求(特定请求)回答。如果仅出现一般请求,则该实例是原始的$ k $ Server问题之一,并且适用$ K $的竞争比率下降。如果仅出现特定的请求,则竞争比率为$ 1 $的解决方案将变得微不足道。我们表明,如果出现两种请求,下限将提高到$ 2K-1 $。 我们研究确定性的在线算法,并提出了两种统一指标的算法。第一个的竞争比率取决于特定请求的频率。当仅出现一般请求或特定请求主导输入序列时,它的最佳竞争比率为$ 3K-2 $。第二个最差的竞争比率为$ 2K+14美元。对于第一种算法,我们显示$ 3K-2 $的下限,而第二算法仅出现一般请求时,下降的下限为2k-1 $。两种算法在一个行为规则中只有显着影响竞争比率的行为规则有所不同。我们表明,根据规则,在$ k $ server问题的情况下表现良好与混合实例之间的表现之间存在权衡。此外,没有确定性的在线算法可以同时同时使用两种实例。 关于不均匀的指标,我们以$ 2 $的服务器的价格提出了双重覆盖算法的改编,以达到$ 6 $的竞争比率,并适应了竞争性比率为$ 4K $的竞争比率。
The $k$-Server Problem covers plenty of resource allocation scenarios, and several variations have been studied extensively for decades. We present a model generalizing the $k$-Server Problem by preferences of the requests, where the servers are not identical and requests can express which specific servers should serve them. In our model, requests can either be answered by any server (general requests) or by a specific one (specific requests). If only general requests appear, the instance is one of the original $k$-Server Problem, and a lower bound for the competitive ratio of $k$ applies. If only specific requests appear, a solution with a competitive ratio of $1$ becomes trivial. We show that if both kinds of requests appear, the lower bound raises to $2k-1$. We study deterministic online algorithms and present two algorithms for uniform metrics. The first one has a competitive ratio dependent on the frequency of specific requests. It achieves a worst-case competitive ratio of $3k-2$ while it is optimal when only general requests appear or when specific requests dominate the input sequence. The second has a worst-case competitive ratio of $2k+14$. For the first algorithm, we show a lower bound of $3k-2$, while the second algorithm has a lower bound of $2k-1$ when only general requests appear. The two algorithms differ in only one behavioral rule that significantly influences the competitive ratio. We show that there is a trade-off between performing well against instances of the $k$-Server Problem and mixed instances based on the rule. Additionally, no deterministic online algorithm can be optimal for both kinds of instances simultaneously. Regarding non-uniform metrics, we present an adaption of the Double Coverage algorithm for $2$ servers on the line achieving a competitive ratio of $6$, and an adaption of the Work-Function-Algorithm achieving a competitive ratio of $4k$.