论文标题
具有L1数据的非线性椭圆形Neumann问题的有限体积方案和重新归一化的解决方案
Finite volume scheme and renormalized solutions for nonlinear elliptic Neumann problem with L1 data
论文作者
论文摘要
在本文中,我们研究了Neumann边界条件和L 1数据的对流扩散椭圆问题的有限体积近似的收敛性。为了处理方程式的非强制性特征以及右手侧的低规律性,我们将有限体积工具和重新归一化的技术混合在一起。为了处理Neumann边界条件,我们选择中位数为空中值的溶液,我们证明了收敛结果。
In this paper we study the convergence of a finite volume approximation of a convective diffusive elliptic problem with Neumann boundary conditions and L 1 data. To deal with the non-coercive character of the equation and the low regularity of the right hand-side we mix the finite volume tools and the renormalized techniques. To handle the Neumann boundary conditions we choose solutions having a null median and we prove a convergence result.