论文标题

具有L1数据的非线性椭圆形Neumann问题的有限体积方案和重新归一化的解决方案

Finite volume scheme and renormalized solutions for nonlinear elliptic Neumann problem with L1 data

论文作者

Aoun, Mirella, Guibé, Olivier

论文摘要

在本文中,我们研究了Neumann边界条件和L 1数据的对流扩散椭圆问题的有限体积近似的收敛性。为了处理方程式的非强制性特征以及右手侧的低规律性,我们将有限体积工具和重新归一化的技术混合在一起。为了处理Neumann边界条件,我们选择中位数为空中值的溶液,我们证明了收敛结果。

In this paper we study the convergence of a finite volume approximation of a convective diffusive elliptic problem with Neumann boundary conditions and L 1 data. To deal with the non-coercive character of the equation and the low regularity of the right hand-side we mix the finite volume tools and the renormalized techniques. To handle the Neumann boundary conditions we choose solutions having a null median and we prove a convergence result.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源