论文标题
多主体元素合金中的最大强度和脱位图案
Maximum strength and dislocation patterning in multi-principal element alloys
论文作者
论文摘要
通常称为含三个或多个高浓度的三个或更多成分的中等或高透镜合金,具有可调化学的化学短距离(SRO)。利用大规模的原子模拟,我们探测了模型CRCONI合金和拆卸化学短距离排序效应的Hall-Petch增强和变形机制的极限。已经发现,在SRO存在的情况下,最大强度显着提高,最强的晶粒尺寸漂移到较小的值。另外,断层和变形转化的倾向减少了,并伴随着平面滑移和应变定位的强化。我们揭示了明显取决于晶体学晶粒方向以及变形过程中激活的滑动平面的数量的明显不同的变形微观结构和错位模式。单平滑的晶粒达到了变形诱导的结构转化的最高体积分数,带有双活动滑移平面的谷物会形成最密集的脱位网络。这些结果推进了对MPEAS中变形机制和脱位模式的基本理解,提出了一种通过同时调整谷物纹理和局部化学秩序来调整机械行为的机械策略。
Multi-principal element alloys (MPEAs), commonly termed as medium- or high-entropy alloys containing three or more components in high concentrations, render a tunable chemical short-range order (SRO). Leveraging large-scale atomistic simulations, we probe the limit of Hall-Petch strengthening and deformation mechanisms in a model CrCoNi alloy and unravel chemical short-range ordering effects. It is found that, in the presence of SRO, the maximum strength is appreciably increased, and the strongest grain size drifts to a small value. Additionally, the propensity for faulting and deformation transformation is reduced and accompanied by the intensification of planar slip and strain localization. We reveal strikingly different deformation microstructures and dislocation patterns that prominently depend on crystallographic grain orientation and the number of slip planes activated during deformation. Grain of single planar slip attains the highest volume fraction of deformation-induced structure transformation, and grain with double active slip planes develops the densest dislocation network. These results advancing the fundamental understanding of deformation mechanisms and dislocation patterning in MPEAs suggest a mechanistic strategy for tuning mechanical behavior through simultaneously tailoring grain texture and local chemical order.