论文标题
爱因斯坦标量场方程的bianchi i“渐近kasner”解决方案
Bianchi I "asymptotically Kasner" solutions of the Einstein scalar field equations
论文作者
论文摘要
在这项工作中,我们研究了用最小耦合标量场对爱因斯坦方程的渐近行为。本文的主要重点是在什么条件下建立解决方案的“渐近kasner”,足够接近初始奇异性。为了解决这个问题,我们将注意力限制在Bianchi I太空时期。通过将我们的注意力限制在严格的单调标量场上,我们能够在潜在的潜力上提供必要的条件,以使所得的解决方案渐近地是Kasner。此外,我们提供渐近和数值的渐近示例,渐变性卡斯纳空间时间。
In this work we investigate the asymptotic behaviour of solutions to the Einstein equations with a minimally coupled scalar field. The primary focus of the present paper here establishing under what conditions a solution becomes "asymptotically Kasner" sufficiently close to the initial singularity. To address this question we restrict our attention to Bianchi I space-times. By restricting our attention to a strictly monotonic scalar field we are able to provide necessary conditions on a potential so that the resulting solution is asymptotically Kasner. Moreover, we provide both explicit and numerical examples of asymptotically Kasner space-times.