论文标题
解决公平分类中的战略操纵差异
Addressing Strategic Manipulation Disparities in Fair Classification
论文作者
论文摘要
在现实世界中的分类设置(例如贷款申请评估或在线平台上的内容审核)中,个人通过策略性地更新其功能来响应分类器预测,以增加他们接受特定(积极的)决定的可能性(以一定的费用)。但是,当不同的人口组具有不同的功能分布或支付不同的更新成本时,先前的工作表明,来自少数群体的个人通常会支付更高的费用来更新其功能。公平的分类旨在通过限制分类器来满足统计公平属性来解决此类分类器绩效差异。但是,我们表明,标准的公平限制并不能保证受约束的分类器降低战略操纵成本的差异。为了解决战略环境中的这种偏见,并为战略操纵提供了平等的机会,我们提出了一个有限的优化框架,该框架构建分类器,以降低少数群体的战略操纵成本。我们通过研究群体特定的战略成本差异与标准选择率公平度指标(例如统计率和真实正率)之间的理论联系来开发我们的框架。从经验上讲,我们在多个现实世界数据集上显示了这种方法的功效。
In real-world classification settings, such as loan application evaluation or content moderation on online platforms, individuals respond to classifier predictions by strategically updating their features to increase their likelihood of receiving a particular (positive) decision (at a certain cost). Yet, when different demographic groups have different feature distributions or pay different update costs, prior work has shown that individuals from minority groups often pay a higher cost to update their features. Fair classification aims to address such classifier performance disparities by constraining the classifiers to satisfy statistical fairness properties. However, we show that standard fairness constraints do not guarantee that the constrained classifier reduces the disparity in strategic manipulation cost. To address such biases in strategic settings and provide equal opportunities for strategic manipulation, we propose a constrained optimization framework that constructs classifiers that lower the strategic manipulation cost for minority groups. We develop our framework by studying theoretical connections between group-specific strategic cost disparity and standard selection rate fairness metrics (e.g., statistical rate and true positive rate). Empirically, we show the efficacy of this approach over multiple real-world datasets.