论文标题
上行链路NB-iot的深度学习同步
Deep Learning-Based Synchronization for Uplink NB-IoT
论文作者
论文摘要
我们提出了一种基于神经网络(NN)的算法,用于窄带物理随机访问通道(NB-iot)的窄带物理随机通道(NBRACH)的窄带物理随机通道(NPRACH)的到达时间(TOA)和载体频率偏移(CFO)估计。引入的NN体系结构利用了剩余的卷积网络以及对5G新无线电(5G NR)规格的序言结构的了解。对第三代合作伙伴项目(3GPP)的基准测试,使用用户随机下降的Urban Microcell(UMI)渠道模型针对最先进的基线表明,该提出的方法可在虚假负率(FNR)中最多8 dB增长(FNR)以及虚假正率(FPR)以及TOA和CFO估计精度的显着获得。此外,我们的模拟表明,所提出的算法可以在广泛的通道条件,CFO和传输概率上获得收益。引入的同步方法在基站(BS)运行,因此在用户设备上没有其他复杂性。通过降低序列长度或发射功率,它可能会导致电池寿命延长。我们的代码可在以下网址提供:https://github.com/nvlabs/nprach_synch/。
We propose a neural network (NN)-based algorithm for device detection and time of arrival (ToA) and carrier frequency offset (CFO) estimation for the narrowband physical random-access channel (NPRACH) of narrowband internet of things (NB-IoT). The introduced NN architecture leverages residual convolutional networks as well as knowledge of the preamble structure of the 5G New Radio (5G NR) specifications. Benchmarking on a 3rd Generation Partnership Project (3GPP) urban microcell (UMi) channel model with random drops of users against a state-of-the-art baseline shows that the proposed method enables up to 8 dB gains in false negative rate (FNR) as well as significant gains in false positive rate (FPR) and ToA and CFO estimation accuracy. Moreover, our simulations indicate that the proposed algorithm enables gains over a wide range of channel conditions, CFOs, and transmission probabilities. The introduced synchronization method operates at the base station (BS) and, therefore, introduces no additional complexity on the user devices. It could lead to an extension of battery lifetime by reducing the preamble length or the transmit power. Our code is available at: https://github.com/NVlabs/nprach_synch/.