论文标题
奇数特征及其自动形态的正交内部产品图
Orthogonal inner product graphs of odd characteristic and their automorphisms
论文作者
论文摘要
令$ \ mathbb {f} _q $是一个有限特征的有限字段,$2ν+δ\ geq2 $ a $δ= 0,1 $或$ 2 $的整数号码。定义了$ \ mathbb {f} _q $上的正交内部产品图$ oi \ big(2ν+δ,q \ big)$,并且确定了$ oi \ big(2ν+δ,q \ big)$的自动形态组。我们表明,如果$2ν+δ= 2 $,则$ oi \ big(2ν+δ,q \ big)$是一个断开的图;否则不是。此外,我们有两个必要和足够的条件,用于两个$ oi \ big(2ν+δ,q \ big)$,分别为$ oi \ big(2ν+δ,q \ big)$的两个边缘在同一轨道下,在$ oi \ big big big(2ν+Δ,q \ big)的自动态组下。
Let $\mathbb{F}_q$ be a finite field of odd characteristic and $2ν+δ\geq2$ an integer number with $δ=0,1$ or $2$. The orthogonal inner product graph $Oi\big(2ν+δ,q\big)$ over $\mathbb{F}_q$ is defined and the automorphism groups of $Oi\big(2ν+δ,q\big)$ are determined. We show that $Oi\big(2ν+δ,q\big)$ is a disconnected graph if $2ν+δ=2$; otherwise it is not. Moreover, we have two necessary and sufficient conditions for two vertices of $Oi\big(2ν+δ,q\big)$ and two edges of $Oi\big(2ν+δ,q\big)$ respectively are in the same orbit under the action of the automorphism group of $Oi\big(2ν+δ,q\big).$