论文标题

基于变压器的生成对抗网络用于肝分段

Transformer based Generative Adversarial Network for Liver Segmentation

论文作者

Demir, Ugur, Zhang, Zheyuan, Wang, Bin, Antalek, Matthew, Keles, Elif, Jha, Debesh, Borhani, Amir, Ladner, Daniela, Bagci, Ulas

论文摘要

放射学扫描(CT,MRI)的自动肝分割除了常规使用诊断和预后外,还可以改善手术和治疗计划以及随访评估。尽管卷积神经网络(CNN)已成为标准图像分割任务,但最近,由于变压器正在利用捕获信号中的长距离依赖性建模能力,因此,这已被称为注意机制,因此这已经开始改变了基于变形金刚的体系结构。在这项研究中,我们提出了一种新的分割方法,使用将变压器与生成对抗网络(GAN)方法相结合的混合方法。这种选择背后的前提是,变压器的自我发挥机制使网络可以汇总高维功能并提供全球信息建模。与传统方法相比,该机制提供了更好的细分性能。此外,我们将该生成器编码到基于GAN的架构中,以便GAN中的歧视网络可以与来自人类(专家)注释的真实面具相比,可以对生成的分割掩码的可信度进行分类。这使我们能够在掩模中提取高维拓扑信息,以进行生物医学图像分割,并提供更可靠的分割结果。我们的模型达到了0.9433的高骰子系数,召回0.9515,精度为0.9376,并且优于其他基于变压器的方法。

Automated liver segmentation from radiology scans (CT, MRI) can improve surgery and therapy planning and follow-up assessment in addition to conventional use for diagnosis and prognosis. Although convolutional neural networks (CNNs) have become the standard image segmentation tasks, more recently this has started to change towards Transformers based architectures because Transformers are taking advantage of capturing long range dependence modeling capability in signals, so called attention mechanism. In this study, we propose a new segmentation approach using a hybrid approach combining the Transformer(s) with the Generative Adversarial Network (GAN) approach. The premise behind this choice is that the self-attention mechanism of the Transformers allows the network to aggregate the high dimensional feature and provide global information modeling. This mechanism provides better segmentation performance compared with traditional methods. Furthermore, we encode this generator into the GAN based architecture so that the discriminator network in the GAN can classify the credibility of the generated segmentation masks compared with the real masks coming from human (expert) annotations. This allows us to extract the high dimensional topology information in the mask for biomedical image segmentation and provide more reliable segmentation results. Our model achieved a high dice coefficient of 0.9433, recall of 0.9515, and precision of 0.9376 and outperformed other Transformer based approaches.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源