论文标题
戈伦斯坦(Gorenstein)的射击模块
Gorenstein projective modules over rings of Morita contexts
论文作者
论文摘要
在双模模的半湿和较弱的兼容性下,我们在莫里塔环境的环上建立了足够和必要的条件。这概括并扩展了三角矩阵Artin代数以及在文献中具有两个双模同性形态的莫里塔语境的Artin代数,在文献中,仅在强烈的兼容性下,仅给出了足够的条件。提供了一种应用,以描述由莫里塔环境引起的非交通量张量产品的Gorenstein-Poxtive模块。此外,我们使用noether戒指和模块,而不是Artin代数和模块。
Under semi-weak and weak compatibility of bimodules, we establish sufficient and necessary conditions of Gorenstein-projective modules over rings of Morita contexts with one bimodule homomorphism zero. This generalises and extends results on triangular matrix Artin algebras and on Artin algebras of Morita contexts with two bimodule homomorphisms zero in the literature, where only sufficient conditions are given under a strong assumption of compatibility of bimodules. An application is provided to describe Gorenstein-projective modules over noncommutative tensor products arising from Morita contexts. Moreover, we work with Noether rings and modules instead of Artin algebras and modules.