论文标题

平滑代码和晶格:系统研究和新界限

Smoothing Codes and Lattices: Systematic Study and New Bounds

论文作者

Debris-Alazard, Thomas, Ducas, Léo, Resch, Nicolas, Tillich, Jean-Pierre

论文摘要

在本文中,我们在晶格$和$代码之间并行重新访问平滑界限。这些界限最初是由Micciancio和Regev引入的,是与高斯分布实例化的,对于争论许多基于晶格的密码系统的安全性至关重要。我们不受直接应用程序的关注,我们提供了一项系统的研究,以了解如何在两个领域之间转移技术的界限。我们还考虑了球形对称噪声分布的多种选择。 我们发现,最坏情况的最佳策略结合了Parseval的身份,Cauchy-Schwarz的不平等和第二个线性编程结合,这对于代码和晶格以及手头的所有噪声分布都符合。对于平均案例分析,线性编程结合可以被平均计数严格替换。 仅此一项就可以在随机代码和随机晶格上为球形均匀的噪声提供最佳结果。这也改善了以前的高斯平滑度限制在最坏情况下的晶格,但令人惊讶的是,与高斯(或代码上的伯努利噪声)相比,这为均匀的球噪声提供了更好的结果。 可以通过将高斯和伯努利分布的足够分解和截断为均匀噪声的叠加,对这些情况的进一步改善,并将它们与统一案例相提并论,从而解决这种违反直觉的情况。

In this article we revisit smoothing bounds in parallel between lattices $and$ codes. Initially introduced by Micciancio and Regev, these bounds were instantiated with Gaussian distributions and were crucial for arguing the security of many lattice-based cryptosystems. Unencumbered by direct application concerns, we provide a systematic study of how these bounds are obtained for both lattices $and$ codes, transferring techniques between both areas. We also consider multiple choices of spherically symmetric noise distribution. We found that the best strategy for a worst-case bound combines Parseval's Identity, the Cauchy-Schwarz inequality, and the second linear programming bound, and this holds for both codes and lattices and all noise distributions at hand. For an average-case analysis, the linear programming bound can be replaced by a tight average count. This alone gives optimal results for spherically uniform noise over random codes and random lattices. This also improves previous Gaussian smoothing bound for worst-case lattices, but surprisingly this provides even better results with uniform ball noise than for Gaussian (or Bernoulli noise for codes). This counter-intuitive situation can be resolved by adequate decomposition and truncation of Gaussian and Bernoulli distributions into a superposition of uniform noise, giving further improvement for those cases, and putting them on par with the uniform cases.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源