论文标题
晚期晚期左心室的三维分割增强了慢性梗塞的MR图像,结合了长轴和短轴信息
Three-Dimensional Segmentation of the Left Ventricle in Late Gadolinium Enhanced MR Images of Chronic Infarction Combining Long- and Short-Axis Information
论文作者
论文摘要
由于强度异质性是由于梗塞心肌中的对比剂积累而引起的强度异质性,因此很难自动分割gadolinium增强(LGE)心脏MR(CMR)图像中左心室(LV)的自动分割。在本文中,我们提出了一个综合的框架,用于在LGE CMR图像中自动3D分割。鉴于Cine图像中的心肌轮廓作为先验知识,该框架最初通过2D翻译注册来传播从Cine到LGE图像的先验分割。然后用传播轮廓分别构建两个分别代表心内膜和心外膜表面的网格。施工后,两个网格朝向统一的3D坐标系中的短轴和长轴LGE图像中检测到的心肌边缘点变形。考虑到LGE图像中LV的强度特性,我们提出了LV的新型参数模型,以使心肌边缘点检测一致,而不管心肌(梗塞或健康)以及LGE图像的类型(短轴或长轴)。我们已经评估了提出的框架,并使用了21组真实患者和4组模拟幻影数据。距离和基于区域的性能指标都证实了这样的观察结果,即该框架可以为LGE图像的心肌分割产生准确可靠的结果。我们还测试了该框架在实际和模拟设置中的先验分割方面的鲁棒性。实验结果表明,所提出的框架可以大大补偿给定的先验知识中的变化,并始终如一地产生准确的分割。
Automatic segmentation of the left ventricle (LV) in late gadolinium enhanced (LGE) cardiac MR (CMR) images is difficult due to the intensity heterogeneity arising from accumulation of contrast agent in infarcted myocardium. In this paper, we present a comprehensive framework for automatic 3D segmentation of the LV in LGE CMR images. Given myocardial contours in cine images as a priori knowledge, the framework initially propagates the a priori segmentation from cine to LGE images via 2D translational registration. Two meshes representing respectively endocardial and epicardial surfaces are then constructed with the propagated contours. After construction, the two meshes are deformed towards the myocardial edge points detected in both short-axis and long-axis LGE images in a unified 3D coordinate system. Taking into account the intensity characteristics of the LV in LGE images, we propose a novel parametric model of the LV for consistent myocardial edge points detection regardless of pathological status of the myocardium (infarcted or healthy) and of the type of the LGE images (short-axis or long-axis). We have evaluated the proposed framework with 21 sets of real patient and 4 sets of simulated phantom data. Both distance- and region-based performance metrics confirm the observation that the framework can generate accurate and reliable results for myocardial segmentation of LGE images. We have also tested the robustness of the framework with respect to varied a priori segmentation in both practical and simulated settings. Experimental results show that the proposed framework can greatly compensate variations in the given a priori knowledge and consistently produce accurate segmentations.