论文标题
测得的质子和HE3 EDM的差异:T-反转不变性的系统学测试减少
Difference of measured proton and He3 EDMs: a reduced systematics test of T-reversal invariance
论文作者
论文摘要
(时间反转对称T侵入)永久性强子电偶极矩(EDM)的上限是PSI中子EDM值; $ d_n =(0.0 \ pm1.1 _ {\ rm stat} \ pm0.2 _ {\ rm sys} \ times10^{ - 26})\,e $ \,cm。本文介绍了一个实验,要在BNL传播的剪辑项目中进行,该实验能够生产强烈的质子极化光束,$ p $,螺旋螺旋(He $ {}^3 $ nuclei),H和其他同位素。 EDM原型环PTR(在JueLich的Cozy Lab提议)有望测量单个粒子EDM(例如,使用同时反向旋转的质子束(例如$ {\ rm EDM EDM \ _p} $)同时进行极化质子束,并具有统计误差$ \ pm10^{ - 30} $ E.CM的统计误差$ \ e.cm,较差的limitions and limitions and limitions and limitions and limity and suptime and seled,四分之一,四分之一的元素,四分之一的元素,该元素,四分之一的元素,四分之一的速度,该元素,四分之一的元素。可比较的系统错误。 一个复合粒子,螺旋朝向T与对称的约束比质子更具挑战性。 $$δ= {\ rm EDM} _h- {\ rm EDM} _p的任何可测量的大值,$$,helion和proton EDM的差异将代表BSM物理。 该计划是在BNL上复制PTR。主要的系统误差将被取消两种方式,两种方式都通过锁定的“双重魔术” 38.6 \,MEV质子和39.2 \,Mev Helion Spin Tunes而成为可能。这可以稳定其MDM诱导的平面预次预次,而不会影响其EDM诱导的平面前渗透。因此,主要的系统误差将在固定字段配置中的$δ$中取消。 另一个系统的误差取消将来自平均运行,磁场和梁循环方向都相反。通过长期可再现的绝对频率相锁定,使精确的磁场逆转成为可能,以消除(不切实际)磁场测量的需求。在最终附录中讨论了EDM测量失败的风险。
The upper limit on (time reversal symmetry T-violating) permanent hadron electric dipole moments (EDMs) is the PSI neutron EDM value; $d_n = (0.0\pm1.1_{\rm stat}\pm0.2_{\rm sys}\times10^{-26})\,e$\,cm. This paper describes an experiment to be performed at a BNL-proposed CLIP project which is to be capable of producing intense polarized beams of protons, $p$, helions (He${}^3$ nuclei), h, and other isotopes. The EDM prototype ring PTR (proposed at COSY Lab, Juelich) is expected to measure individual particle EDMs (for example ${\rm EDM\_p}$ for the proton) using simultaneous counter-rotating polarized proton beams, with statistical error $\pm10^{-30}$e.cm after one year running time, four orders of magnitude less than the PSI neutron EDM upper limit, and with comparable systematic error. A composite particle, the helion faces T-symmetry constraints more challenging than the proton. Any measurably large value of $$Δ={\rm EDM}_h-{\rm EDM}_p,$$ the difference of helion and proton EDMs, would represent BSM physics. The plan is to replicate PTR at BNL. The dominant systematic error would be canceled two ways, both made possible by phase-locking "doubly-magic" 38.6\,MeV proton and 39.2\,MeV helion spin tunes. This stabilizes their MDM-induced in-plane precessions, without affecting their EDM-induced out-of-plane precessions. The dominant systematic error would therefore cancel in the meaurement of $Δ$ in a fixed field configuration. Another systematic error cancellation will come from averaging runs for which both magnetic field and beam circulation directions are reversed. Precise magnetic field reversal is made possible by the reproducible absolute frequency phase-locking over long runs to eliminate the need for (impractically precise) magnetic field measurement. Risk of EDM measurement failure is discussed in a final appendix.