论文标题

阻尼谐波振荡器的Noether对称性和第一积分

Noether symmetries and first integrals of damped harmonic oscillator

论文作者

Farooq, M. Umar, Safdar, M.

论文摘要

Noether定理在动力学系统的动作积分和保护定律之间建立了有趣的联系。本工作的目的是将阻尼的谐波振荡器问题分类,并在抑制和严重的阻尼病例下为所有过度阻尼的人构建相应的保护定律。对于每种情况,我们最多获得了五个线性独立的组发电机,它们提供了相关的五个保守量。值得注意的是,在获得完整的不变量之后,我们为每种情况获得分析解决方案。在当前的工作中,我们还为阻尼的谐波振荡器引入了一个新的Lagrangian。尽管这种新的Lagrangian的形式和由Bateman提出的形式是完全不同的,但它产生了相同的Noether对称性和保守数量。因此,我们在这里提出的这种新形式的拉格朗日形式对于物理学家来说可能会非常有趣。此外,我们还发现了Noethy对称性的谎言代数,并指出了与Noether对称性和阻尼谐波振荡器的第一个积分有关的结果的一些有趣方面,这些方面可能在早期的研究中没有报道。

Noether theorem establishes an interesting connection between symmetries of the action integral and conservation laws of a dynamical system. The aim of the present work is to classify the damped harmonic oscillator problem with respect to Noether symmetries and to construct corresponding conservation laws for all over-damped, under damped and critical damped cases. For each case we obtain maximum five linearly independent group generators which provide related five conserved quantities. Remarkably, after obtaining complete set of invariant quantities we obtain analytical solutions for each case. In the current work, we also introduce a new Lagrangian for the damped harmonic oscillator. Though the form of this new Lagrangian and presented by Bateman are completely different, yet it generates same set of Noether symmetries and conserved quantities. So, this new form of Lagrangian we are presenting here may be seriously interesting for the physicists. Moreover, we also find the Lie algebras of Noether symmetries and point out some interesting aspects of results related to Noether symmetries and first integrals of damped harmonic oscillator which perhaps not reported in the earlier studies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源