论文标题

Q-Hahn过程的可集成边界

Integrable boundaries for the q-Hahn process

论文作者

Frassek, Rouven

论文摘要

通过吉亚尔迪纳(Giardinà,Kurchan)和Arxiv的作者引入的谐波过程中的灵感:1904.01048,我们提出了其三角变形的可集成边界条件,称为Q-HAHN进程。遵循Mangazeev和Lu在Arxiv中建立的形式主义:1903.00274使用随机R-Matrix,我们认为可以从Sklyanin扩展量子反向散射方法扩展的框架中构建的转移矩阵来得出所提出的边界条件,从而保留了该模型的可集成结构。该方法避免了K-Matrix的明确结构。

Taking inspiration from the harmonic process with reservoirs introduced by Giardinà, Kurchan and the author in arXiv:1904.01048, we propose integrable boundary conditions for its trigonometric deformation which is known as the q-Hahn process. Following the formalism established by Mangazeev and Lu in arXiv:1903.00274 using the stochastic R-matrix, we argue that the proposed boundary conditions can be derived from a transfer matrix constructed in the framework of Sklyanin's extension of the quantum inverse scattering method and consequently preserve the integrable structure of the model. The approach avoids the explicit construction of the K-matrix.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源