论文标题

弱各向异性强壮的不平等:$ \ mathbb {r}^d $的域上漂移扩散操作员的基本自我接合度,重新审视

Weak anisotropic Hardy inequality: essential self-adjointness of drift-diffusion operators on domains in $\mathbb{R}^d$, revisited

论文作者

Nenciu, Gheorghe, Nenciu, Irina

论文摘要

我们考虑了漂移扩散操作员的基本自我相关性的问题$ h = - \ frac {1}ρ\ nabla \ cdotρ\ mathbb d \ nabla +nabla +v $在域上$ω\ subset \ subset \ subbb {r mathbb {r}^d with $ \ subset \ mathbb {r}^d $ with $ \ \ \ \ \ \ \ \ nmatcal { $ρ,\; \ Mathbb {D} $和$ V $。我们提供标准,显示这些系数余额的行为如何作为$ x \ rightarrow \ partialω$,以确保$ h $的基本自我伴侣。在途中,我们证明了具有独立利益的弱各向异性耐寒性不平等。

We consider the problem of essential self-adjointness of the drift-diffusion operator $H=-\frac{1}ρ\nabla\cdot ρ\mathbb D\nabla +V$ on domains $Ω\subset \mathbb{R}^d$ with $\mathcal{C}^2$-boundary $\partial Ω$ and for large classes of coefficients $ρ,\; \mathbb{D}$ and $V$. We give criteria showing how the behavior as $x \rightarrow \partial Ω$ of these coefficients balances to ensure essential self-adjointness of $H$. On the way we prove a weak anisotropic Hardy inequality which is of independent interest.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源