论文标题
Parton分布需要代表性抽样
Parton distributions need representative sampling
论文作者
论文摘要
在Parton分布函数(PDF)的全局QCD拟合中,PDFS上估计的不确定性很大一部分源自参数功能形式和拟合方法的选择。我们认为,在大型强子对撞机和Tevatron的高措施测量中,可以使用常见的PDF集合来低估这些类型的不确定性。量化这些不确定性的一种富有成果的方法是将它们视为在多维参数空间中允许的PDF溶液的采样引起的。这种方法应用了有关大规模种群调查和准蒙特卡洛整合方法的统计研究中获得的强大见解。特别是,PDF拟合可能会受到大数据悖论的影响,该悖论规定,更多的实验数据不会自动提高PDF的准确性 - 密切关注可能的PDF解决方案的数据质量和采样是必不可少的。为了测试实验性观察的PDF不确定性的采样是否确实代表了所有可接受的溶液,我们基于参数扫描和随机抽样的组合,引入了一种技术(````hopscotch扫描'')了。通过这项技术,我们表明,使用公共NNPDF4.0拟合代码获得的13 TEV关键LHC横截面的PDF不确定性大于使用已发表的NNPDF4.0 Monte-Carlo复制集获得的名义不确定性,在计算可能的分布时。基于同样的理由,在较大的动量分数$ x $和小$ x $的Gluon PDF上的魅力分配的不确定性扩大。在分析最小化(Hessian)形式主义中获得的PDF集合中,对PDF不确定性的公差必须基于对PDF功能形式和实验的选择的足够完整的采样。
In global QCD fits of parton distribution functions (PDFs), a large part of the estimated uncertainty on the PDFs originates from the choices of parametric functional forms and fitting methodology. We argue that these types of uncertainties can be underestimated with common PDF ensembles in high-stake measurements at the Large Hadron Collider and Tevatron. A fruitful approach to quantify these uncertainties is to view them as arising from sampling of allowed PDF solutions in a multidimensional parametric space. This approach applies powerful insights gained in recent statistical studies of large-scale population surveys and quasi-Monte Carlo integration methods. In particular, PDF fits may be affected by the big data paradox, which stipulates that more experimental data do not automatically raise the accuracy of PDFs -- close attention to the data quality and sampling of possible PDF solutions is as essential. To test if the sampling of the PDF uncertainty of an experimental observable is truly representative of all acceptable solutions, we introduce a technique (``a hopscotch scan'') based on a combination of parameter scans and stochastic sampling. With this technique, we show that the PDF uncertainty on key LHC cross sections at 13 TeV obtained with the public NNPDF4.0 fitting code is larger than the nominal uncertainty obtained with the published NNPDF4.0 Monte-Carlo replica sets, when accounting for the likelihood distribution. On the same grounds, the uncertainties on the charm distribution at a large momentum fraction $x$ and gluon PDF at small $x$ are enlarged. In PDF ensembles obtained in the analytic minimization (Hessian) formalism, the tolerance on the PDF uncertainty must be based on sufficiently complete sampling of PDF functional forms and choices of the experiments.