论文标题
跟踪欧洲罗宾隐秘4突变体中的电子传输级联
Tracking the Electron Transfer Cascade in European Robin Cryptochrome 4 Mutants
论文作者
论文摘要
迁徙鸟类无法感觉到弱地球强度磁场的难以捉摸的主要步骤是,在这些鸟类视网膜中的加密鲜明的黄色蛋白质内,长寿命,磁性激进对的一对长寿命,磁性激进对的形成。黄素发色团的蓝光吸收触发了一系列跨四型色氨酸链的顺序电子传递步骤,向黄素受体触发。最近从夜间迁移的欧洲罗宾(Erithacus rubecula),Ercry4表达加密4的能力,并通过氧化还原势型苯丙氨酸单独替换色氨酸残基的能力,可以探索探索电子传递链中每种色氨酸残基的作用。在这里,我们比较了野生型Ercry4的超快瞬态吸收光谱,其四个突变体的苯丙氨酸残基在链的不同位置。在突变体中,我们观察到链中的前三个色氨酸残基中的每一个都在瞬态吸收数据中增加了独特的弛豫成分(时间常数为0.5、30和150 PS)。末端苯丙氨酸残基突变体中的动力学与野生型Ercry4中的动力学非常相似,但长期寿命的自由基对浓度降低了。对Marcus-Hopfield理论进行了评估和讨论实验结果,为跨色氨酸链的顺序电子传输提供了完整的微观见解。我们的结果为研究旋转传输和动态自旋相关性提供了一条途径。
The primary step in the elusive ability of migratory birds to sense weak Earth-strength magnetic fields is supposedly the light-induced formation of a long-lived, magnetically sensitive radical pair inside a cryptochrome flavoprotein located in the retina of these birds. Blue light absorption by a flavin chromophore triggers a series of sequential electron transfer steps across a tetradic tryptophan chain towards the flavin acceptor. The recent ability to express cryptochrome 4 from the night-migratory European robin (Erithacus rubecula), ErCry4, and to replace the tryptophan residues individually by a redox-inactive phenylalanine offers the prospect of exploring the role of each of the tryptophan residues in the electron transfer chain. Here, we compare ultrafast transient absorption spectroscopy of wild type ErCry4 and four of its mutants having phenylalanine residues in different positions of the chain. In the mutants we observe that each of the first three tryptophan residues in the chain adds a distinct relaxation component (time constants 0.5, 30 and 150 ps) to the transient absorption data. The dynamics in the mutant with a terminal phenylalanine residue are very similar to those in wild type ErCry4, excepted for a reduced concentration of long-lived radical pairs. The experimental results are evaluated and discussed in connection with Marcus-Hopfield theory, providing a complete microscopic insight into the sequential electron transfers across the tryptophan chain. Our results offer a path to studying spin transport and dynamical spin correlations in flavoprotein radical pairs.