论文标题

旨在理解Grokking:一种有效的表示学理论

Towards Understanding Grokking: An Effective Theory of Representation Learning

论文作者

Liu, Ziming, Kitouni, Ouail, Nolte, Niklas, Michaud, Eric J., Tegmark, Max, Williams, Mike

论文摘要

我们的目标是了解Grokking,这是一种现象,其中模型在过度拟合训练集后很长时间概括了。我们介绍了由有效理论锚定的微观分析,也是描述超参数学习性能的相图的宏观分析。我们发现概括源于结构化表示,其训练动力和对训练集大小的依赖可以通过玩具环境中的有效理论来预测。我们从经验上观察到四个学习阶段的存在:理解,groking,记忆和混乱。我们发现,在记忆和混乱之间,只有在“ Goldilocks区”(包括理解和grokking)中发生的表示形式。我们在变压器上发现Grokking阶段保持更接近记忆阶段(与理解阶段相比),从而导致泛化延迟。 Goldilocks阶段让人联想到达尔文进化中的“智慧”,其中资源限制促使发现更有效的解决方案。这项研究不仅提供了对Grokking起源的直观解释,而且还强调了物理启发的工具的有用性,例如有效的理论和相图,用于理解深度学习。

We aim to understand grokking, a phenomenon where models generalize long after overfitting their training set. We present both a microscopic analysis anchored by an effective theory and a macroscopic analysis of phase diagrams describing learning performance across hyperparameters. We find that generalization originates from structured representations whose training dynamics and dependence on training set size can be predicted by our effective theory in a toy setting. We observe empirically the presence of four learning phases: comprehension, grokking, memorization, and confusion. We find representation learning to occur only in a "Goldilocks zone" (including comprehension and grokking) between memorization and confusion. We find on transformers the grokking phase stays closer to the memorization phase (compared to the comprehension phase), leading to delayed generalization. The Goldilocks phase is reminiscent of "intelligence from starvation" in Darwinian evolution, where resource limitations drive discovery of more efficient solutions. This study not only provides intuitive explanations of the origin of grokking, but also highlights the usefulness of physics-inspired tools, e.g., effective theories and phase diagrams, for understanding deep learning.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源