论文标题

出埃及记:对峰值神经网络的稳定而有效的培训

EXODUS: Stable and Efficient Training of Spiking Neural Networks

论文作者

Bauer, Felix Christian, Lenz, Gregor, Haghighatshoar, Saeid, Sheik, Sadique

论文摘要

尖峰神经网络(SNN)在能源效率至关重要的机器学习任务中获得了显着的吸引力。但是,使用最先进的后传播(BPTT)培训此类网络非常耗时。 Shrestha和Orchard [2018]的先前作品采用了一种称为Slayer的高效GPU加速后传播算法,该算法加快了训练的速度。但是,杀手在计算梯度时没有考虑神经元的复位机制,我们认为这是数值不稳定性的来源。为了抵消这一点,Slayer跨层引入了梯度刻度超参数,需要手动调整。在本文中,(i)我们修改杀手并设计了一种称为外exodus的算法,该算法解释了神经元的重置机制,并应用了隐式函数理论(IFT)来计算正确的梯度(与BPTT计算的梯度相等),(ii)我们消除了逐步训练,因此,我们消除了训练的范围,我们会逐步训练(II,II,ii,II,II,II,II,(II),(出埃及记在数值上是稳定的,并且比杀手级具有可比或更好的性能,尤其是在依赖时间特征的SNN的各种任务中。我们的代码可从https://github.com/synsense/sinabs-exodus获得。

Spiking Neural Networks (SNNs) are gaining significant traction in machine learning tasks where energy-efficiency is of utmost importance. Training such networks using the state-of-the-art back-propagation through time (BPTT) is, however, very time-consuming. Previous work by Shrestha and Orchard [2018] employs an efficient GPU-accelerated back-propagation algorithm called SLAYER, which speeds up training considerably. SLAYER, however, does not take into account the neuron reset mechanism while computing the gradients, which we argue to be the source of numerical instability. To counteract this, SLAYER introduces a gradient scale hyperparameter across layers, which needs manual tuning. In this paper, (i) we modify SLAYER and design an algorithm called EXODUS, that accounts for the neuron reset mechanism and applies the Implicit Function Theorem (IFT) to calculate the correct gradients (equivalent to those computed by BPTT), (ii) we eliminate the need for ad-hoc scaling of gradients, thus, reducing the training complexity tremendously, (iii) we demonstrate, via computer simulations, that EXODUS is numerically stable and achieves a comparable or better performance than SLAYER especially in various tasks with SNNs that rely on temporal features. Our code is available at https://github.com/synsense/sinabs-exodus.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源