论文标题

有限词的最大$ k $能力的注释

A note on the maximum number of $k$-powers in a finite word

论文作者

Li, Shuo, Pachocki, Jakub, Radoszewski, Jakub

论文摘要

a \ emph {power}是$ \ UnderBrace {uu ... u} _ {k \; \ text {times}} $,其中$ u $是一个词,$ k $是一个正整数;该电源也称为{\ em $ k $ -power},$ k $是其{\ em endent}。我们证明,对于任何$ k \ ge 2 $,在长度$ n $中的不同非空的$ k $ - 功率因子的最大数量介于$ \ frac {n} {k-1} {k-1}-θ(\ sqrt {n})$和$ \ frac {n-1} {k-1} {k-1} $之间。我们还表明,指数的最大数量至少为2 $ n $ word,最多是$ n-1 $。两种上限都将$ n-1 $的最近上限概括为Brlek and Li(2022)的长度 - $ n $ Word的不同正方形因子的最大数量。

A \emph{power} is a word of the form $\underbrace{uu...u}_{k \; \text{times}}$, where $u$ is a word and $k$ is a positive integer; the power is also called a {\em $k$-power} and $k$ is its {\em exponent}. We prove that for any $k \ge 2$, the maximum number of different non-empty $k$-power factors in a word of length $n$ is between $\frac{n}{k-1}-Θ(\sqrt{n})$ and $\frac{n-1}{k-1}$. We also show that the maximum number of different non-empty power factors of exponent at least 2 in a length-$n$ word is at most $n-1$. Both upper bounds generalize the recent upper bound of $n-1$ on the maximum number of different square factors in a length-$n$ word by Brlek and Li (2022).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源