论文标题
终身个人背景认可
Lifelong Personal Context Recognition
论文作者
论文摘要
我们专注于与人类终生共生的AI的发展。这项任务的关键先决条件是,人工智能在任何时候都理解了人类所处的个人情境环境。我们概述了这项任务带来的关键挑战,即(i)处理用户的上下文的类似人类和以自我为中心的以人为中心的性质,是对使用有用的建议,(ii)在实现生命的情况下,(ii)在机器上进行的,(ii)在机器上进行识别,(ii)在机器上进行识别,(ii)在(ii)进行了机器,以实现MACHILE的方式(II)通过不断的双向互动,人工智能与人类对世界的表现之间的一致性。在这篇简短的论文中,我们总结了最近解决这些挑战,讨论经验教训并突出未来研究的方向的尝试。主要的外卖信息是,追求该项目需要研究知识表示与机器学习的交集的研究。没有其他技术,这两个技术都无法实现这一目标。
We focus on the development of AIs which live in lifelong symbiosis with a human. The key prerequisite for this task is that the AI understands - at any moment in time - the personal situational context that the human is in. We outline the key challenges that this task brings forth, namely (i) handling the human-like and ego-centric nature of the the user's context, necessary for understanding and providing useful suggestions, (ii) performing lifelong context recognition using machine learning in a way that is robust to change, and (iii) maintaining alignment between the AI's and human's representations of the world through continual bidirectional interaction. In this short paper, we summarize our recent attempts at tackling these challenges, discuss the lessons learned, and highlight directions of future research. The main take-away message is that pursuing this project requires research which lies at the intersection of knowledge representation and machine learning. Neither technology can achieve this goal without the other.