论文标题
超越Planck XII。宇宙参数约束,端到端错误传播
BeyondPlanck XII. Cosmological parameter constraints with end-to-end error propagation
论文作者
论文摘要
我们提出了使用Bayesian Beyondplanck(BP)分析框架估算的宇宙参数约束。此方法支持从原始时间订购的数据到最终宇宙学参数的无缝端到端错误传播。作为该方法的首次证明,我们分析了按时间顺序的Planck LFI观察结果,结合了选定的外部数据(WMAP 33-61GHZ,Planck HFI DR4 353和857GHZ和857GHZ和HASLAM 408MHZ),以及用于打破关键天文粒细胞生理学的像素化图的形式。总体而言,所有结果通常与Planck 2018和WMAP的先前报道的值保持良好吻合,当仅考虑29 <l <601之间的温度多物时,任何参数的相对差异最大。在存在差异的情况下,我们注意到BP结果通常比以前的分析更接近于高HFI主导的Planck 2018结果,这表明低和高多物之间的张力略小。使用来自LFI和WMAP的低L极化信息,我们发现TAU的最佳拟合值= 0.066 +/- 0.013,高于Tau的低值= 0.051 +/- 0.006,源自Planck 2018,略低于Quonical LFI和Wmap Products的关节分析。但是,最重要的是,我们发现在考虑到不同的天空覆盖范围后,BP处理中得出的不确定性比分析官方产品时大约30%。我们认为,这是由于更完整的仪器和天体物理参数模型而边缘化,这导致更可靠,更严格地定义不确定性。我们发现,需要大约2000个蒙特卡洛样品才能获得具有225个独立模式的低分辨率CMB CMB协方差矩阵的可靠收敛。
We present cosmological parameter constraints as estimated using the Bayesian BeyondPlanck (BP) analysis framework. This method supports seamless end-to-end error propagation from raw time-ordered data to final cosmological parameters. As a first demonstration of the method, we analyze time-ordered Planck LFI observations, combined with selected external data (WMAP 33-61GHz, Planck HFI DR4 353 and 857GHz, and Haslam 408MHz) in the form of pixelized maps which are used to break critical astrophysical degeneracies. Overall, all results are generally in good agreement with previously reported values from Planck 2018 and WMAP, with the largest relative difference for any parameter of about 1 sigma when considering only temperature multipoles between 29<l<601. In cases where there are differences, we note that the BP results are generally slightly closer to the high-l HFI-dominated Planck 2018 results than previous analyses, suggesting slightly less tension between low and high multipoles. Using low-l polarization information from LFI and WMAP, we find a best-fit value of tau=0.066 +/- 0.013, which is higher than the low value of tau=0.051 +/- 0.006 derived from Planck 2018 and slightly lower than the value of 0.069 +/- 0.011 derived from joint analysis of official LFI and WMAP products. Most importantly, however, we find that the uncertainty derived in the BP processing is about 30% larger than when analyzing the official products, after taking into account the different sky coverage. We argue that this is due to marginalizing over a more complete model of instrumental and astrophysical parameters, and this results in both more reliable and more rigorously defined uncertainties. We find that about 2000 Monte Carlo samples are required to achieve robust convergence for low-resolution CMB covariance matrix with 225 independent modes.