论文标题

氮化尖晶石固体解决方案:具有可解释的机器学习的配置空间中的图表属性

Spinel nitride solid solutions: charting properties in the configurational space with explainable machine learning

论文作者

Sánchez-Palencia, Pablo, Hamad, Said, Palacios, Pablo, Grau-Crespo, Ricardo, Butler, Keith T.

论文摘要

从头开始预测固体解决方案的配置空间中属性的变化在计算上非常苛刻。我们提出了一种通过密度功能理论和机器学习的结合来加速这些预测的方法,该方法是使用Cutic spinel nitride GESN $ _2 $ n $ _4 $作为案例研究,探索形成能量和电子带gap如何受到配置变量的影响。此外,我们证明了应用可解释的机器学习以了解我们观察到的趋势的晶体化学起源的实用性。不同的配置描述符(库仑矩阵特征光谱,多体张量表示和群集相关功能向量)与不同的模型(线性回归,梯度增强的决策树和多层perceptron)相结合,以从配置的小型配置中概述属性的计算,并将其与整个配置组合在一起。我们讨论不同描述符和模型的性能。对机器学习模型的Shap(Shapley添加说明)分析突出了形成能量值如何以局部晶体结构(单个多面体环境)的变化为主,而电子带隙的值则由更扩展的结构基序的变化主导。最后,我们通过构建结构 - 托管图来证明这种方法的有用性,并确定具有极值属性的GESN $ _2 $ n $ _4 $的重要配置,以及使用配置平均值来计算准确的平衡属性。

Ab initio prediction of the variation of properties in the configurational space of solid solutions is computationally very demanding. We present an approach to accelerate these predictions via a combination of density functional theory and machine learning, using the cubic spinel nitride GeSn$_2$N$_4$ as a case study, exploring how formation energy and electronic bandgap are affected by configurational variations. Furthermore, we demonstrate the utility of applying explainable machine learning to understand the crystal chemistry origins of the trends that we observe. Different configuration descriptors (Coulomb matrix eigenspectrum, many-body tensor representation, and cluster correlation function vectors) are combined with different models (linear regression, gradient-boosted decision tree, and multi-layer perceptron) to extrapolate the calculation of ab initio properties from a small set of configurations to the full space with thousands of configurations. We discuss the performance of different descriptors and models. SHAP (SHapley Additive exPlanations) analysis of the machine learning models highlights how values of formation energy are dominated by variations in local crystal structure (single polyhedral environments), while values of electronic bandgap are dominated by variations in more extended structural motifs. Finally, we demonstrate the usefulness of this approach by constructing structure-property maps, identifying important configurations of GeSn$_2$N$_4$ with extremal properties, as well as by calculating accurate equilibrium properties using configurational averaging.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源