论文标题
超越粒度:对话状态跟踪的多人对话协作选择
Beyond the Granularity: Multi-Perspective Dialogue Collaborative Selection for Dialogue State Tracking
论文作者
论文摘要
在对话状态跟踪中,对话历史是一种至关重要的材料,其利用率在不同模型之间有所不同。但是,无论如何使用对话历史记录,每个现有模型在整个州跟踪过程中都使用自己的一致对话历史记录,无论哪个插槽已更新。显然,它需要不同的对话历史记录才能在不同的回合中更新不同的插槽。因此,使用一致的对话内容可能会导致不同插槽的不足或冗余信息,从而影响整体性能。为了解决这个问题,我们设计了DICOS-DST,以动态选择与每个插槽相对应的用于状态更新的相关对话内容。具体而言,它首先检索了对话历史的转向级话语,并从三个角度的组合中评估了它们与插槽的相关性:(1)与插槽名称的明确连接; (2)与当前转向对话有关; (3)隐性提及的推理。然后将这些观点合并为做出决定,只有选定的对话内容被馈送到状态发电机中,从而明确将传递给下游状态预测的分心信息最小化。实验结果表明,我们的方法在Multiwoz 2.1和Multiwoz 2.2上实现了新的最新性能,并且在多个主流基准数据集(包括SIM-M,SIM-R和DSTC2)上实现了卓越的性能。
In dialogue state tracking, dialogue history is a crucial material, and its utilization varies between different models. However, no matter how the dialogue history is used, each existing model uses its own consistent dialogue history during the entire state tracking process, regardless of which slot is updated. Apparently, it requires different dialogue history to update different slots in different turns. Therefore, using consistent dialogue contents may lead to insufficient or redundant information for different slots, which affects the overall performance. To address this problem, we devise DiCoS-DST to dynamically select the relevant dialogue contents corresponding to each slot for state updating. Specifically, it first retrieves turn-level utterances of dialogue history and evaluates their relevance to the slot from a combination of three perspectives: (1) its explicit connection to the slot name; (2) its relevance to the current turn dialogue; (3) Implicit Mention Oriented Reasoning. Then these perspectives are combined to yield a decision, and only the selected dialogue contents are fed into State Generator, which explicitly minimizes the distracting information passed to the downstream state prediction. Experimental results show that our approach achieves new state-of-the-art performance on MultiWOZ 2.1 and MultiWOZ 2.2, and achieves superior performance on multiple mainstream benchmark datasets (including Sim-M, Sim-R, and DSTC2).